Last time: directional derivative and gradient

Recall the definition of the gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\nabla f=\left\langle f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}\right\rangle
$$

Consider the function $f(x, y z)=x^{2}+y^{2}+z^{2}$. Find the equation of the plane through the point $(1,1,2)$ perpendicular to $\nabla f(1,1,2)$.
(a) $x+y+2 z=6$
(b) $x+y+z=4$
(c) $2 x(x-1)+2 y(y-1)+4 x(z-2)=0$
(d) There is more than one such plane.
(e) I don't know.

Announcements

- Midterm 1 tomorrow evening (Tuesday). Bring your student ID.
- No lecture on Wednesday.
- Extra office hours:
- Monday 2-3pm
- Tuesday 11am-12:30pm
- Reduced office hours on Friday: 9-10am.

The tangent plane to a sphere

Let S be a sphere with centre $O=(0,0,0)$. Let P be a point on S.
Consider the following statement:
The tangent plane to S at P has normal vector $\overrightarrow{O P}$.
(a) This is always false.
(b) This depends on the specific sphere S and the point P.
(c) This is always true.
(d) I don't know.

Local maximum/minimum

Fix $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, not necessarily differentiable; fix $(a, b) \in \mathbb{R}^{2}$.

- We say f has a local maximum at (a, b) if

$$
f(a, b) \geq f(x, y) \text { for all }(y, x) \text { near }(a, b)
$$

- We say f has a local minimum at (a, b) if

$$
f(a, b) \leq f(x, y) \text { for all }(y, x) \text { near }(a, b)
$$

Here "near (a, b) " means "for all (x, y) contained in a small disk of radius ϵ around the point (a, b) ". (ϵ can be very small!)

