Last time: critical points

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. A point $(a, b) \in \mathbb{R}^{2}$ is a critical point of f if one of the following holds:
(1) $\nabla f(a, b)=\langle 0,0\rangle$; or
(2) $\nabla f(a, b)$ is not defined.

Consider the function $f(x, y)=x \sin y$. Find all of its critical points (a, b). How many of them have $0 \leq b<2 \pi$?
(a) 1
(b) 2
(c) 3
(d) Infinitely many.

If you're finished, try to see if any of the critical points you found are local maxima or minima.

Announcements

- Midterm 1 graded and returned. Requests for regrade should be submitted in writing to your section TA, who will refer your question to the TA who graded that specific question.
- Homework deadline is at 8am. It will be strict starting next Monday!
- Please register your i-clicker. If you don't see your scores on Moodle, send me an email with your name, your UIN, and your i-clicker registration number.

Local maximum/minimum

Fix $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, not necessarily differentiable; fix $(a, b) \in \mathbb{R}^{2}$.

- We say f has a local maximum at (a, b) if

$$
f(a, b) \geq f(x, y) \text { for all }(y, x) \text { near }(a, b)
$$

- We say f has a local minimum at (a, b) if

$$
f(a, b) \leq f(x, y) \text { for all }(y, x) \text { near }(a, b)
$$

Here "near (a, b) " means "for all (x, y) contained in a small disk of radius ϵ around the point (a, b) ". (ϵ can be very small!)

Practice with the second derivative test

Recall the function $f(x, y)=x \sin y$. The point $(0, \pi)$ is a critical point. Find D.
(a) $\mathrm{D}=0$
(b) $\mathrm{D}=1$
(c) $\mathrm{D}=-1$
(d) I don't know what to do.

Second derivative test

(1) $D>0, f_{x x}(a, b)>0 \Rightarrow$ local minimum at (a, b).
(2) $D>0, f_{x x}(a, b)<0 \Rightarrow$ local maximum at (a, b).
(3) $D<0 \Rightarrow$ saddle point at (a, b).

