Today: space curves

Which of the following gives a parametrization of the line in \mathbb{R}^3 which passes through the point (0,0,1) and is parallel to the vector (2,-1,0).

(a)
$$\mathbf{r}(t) = \langle 0, 0, 1 \rangle + t \langle 2, -1, 0 \rangle$$

(b)
$$\mathbf{r}(t) = \langle -2, 1, 1 \rangle + t \langle 2, -1, 0 \rangle$$

(c)
$$\mathbf{r}(t) = \langle 0, 0, 1 \rangle + t \langle -2, 1, 0 \rangle$$

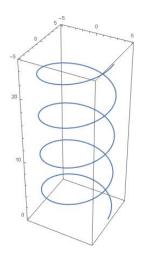
(d)
$$\mathbf{r}(t) = \langle -2, 1, 1 \rangle + t \langle 4, -2, 0 \rangle$$

(e) All of the above.

Things we're not covering:

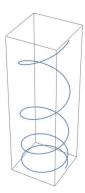
- curvature
- 2 normal vectors, binormal vectors
- 3 tangent and normal components of acceleration

A helix



Practice with space curve parametrizations

Consider the following curve. Which of the equations could be a parametrization?



- (a) $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$.
- (b) $\mathbf{r}(t) = \langle \cos t, t, \sin t \rangle$.
- (c) $\mathbf{r}(t) = \langle \cos t, \sin t, \frac{1}{t} \rangle$.
- (d) $\mathbf{r}(t) = \langle \cos t, \sin t, t^2 \rangle$.
- (e) None of these.

Finding arc-length

Consider the curve parametrized by $\mathbf{r}(t) = \langle t, \sqrt{1-t^2} \rangle$, $-1 \le t \le 1$. What is its length?

Hint: Sketch a picture.

- (a) I can't remember how to calculate the integral.
- (b) π
- (c) $2\sqrt{2}$
- (d) 2π
- (e) $\sqrt{2}$