Today: space curves

Which of the following gives a parametrization of the line in \mathbb{R}^{3} which passes through the point $(0,0,1)$ and is parallel to the vector $\langle 2,-1,0\rangle$.
(a) $\mathbf{r}(t)=\langle 0,0,1\rangle+t\langle 2,-1,0\rangle$
(b) $\mathbf{r}(t)=\langle-2,1,1\rangle+t\langle 2,-1,0\rangle$
(c) $\mathbf{r}(t)=\langle 0,0,1\rangle+t\langle-2,1,0\rangle$
(d) $\mathbf{r}(t)=\langle-2,1,1\rangle+t\langle 4,-2,0\rangle$
(e) All of the above.

Correct answer: (e)

Things we're not covering:

(1) curvature
(2) normal vectors, binormal vectors
(3) tangent and normal components of acceleration

A helix

Practice with space curve parametrizations

Consider the following curve. Which of the equations could be a parametrization?

(a) $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$.
(b) $\mathbf{r}(t)=\langle\cos t, t, \sin t\rangle$.
(c) $\mathbf{r}(t)=\left\langle\cos t, \sin t, \frac{1}{t}\right\rangle$.
(d) $\mathbf{r}(t)=\left\langle\cos t, \sin t, t^{2}\right\rangle$.
(e) None of these.

Correct answer: (d)

Finding arc-length

Consider the curve parametrized by $\mathbf{r}(t)=\left\langle t, \sqrt{1-t^{2}}\right\rangle$, $-1 \leq t \leq 1$. What is its length?

Hint: Sketch a picture.
(a) I can't remember how to calculate the integral.
(b) π
(c) $2 \sqrt{2}$
(d) 2π
(e) $\sqrt{2}$

Correct answer: (b)

