Last time: space curves and arc-length

Recall the formula

$$
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Use this to calculate the length of the curve with equation

$$
x=\frac{2}{3}(y-1)^{\frac{3}{2}}, 1 \leq y \leq 4
$$

(a) 0
(b) $\frac{14}{3}$
(c) $\frac{18}{3}$
(d) I don't know how to find a parametrization $\mathbf{r}(t)$.
(e) I found a parametrization $\mathbf{r}(t)$, but I can't integrate the result.

Cycloid

Tautochrone ("same time")
Brachistochrone ("shortest time")

Integration in one variable

Fix $g:[a, b] \rightarrow \mathbb{R}$.

- Divide $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right.$] of equal length $\Delta x=\frac{b-a}{n}$.
- For each i choose any $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$.

$$
\int_{a}^{b} g(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} g\left(x_{i}^{*}\right) \Delta x
$$

(assuming the limit exists and is independent of the choices of x_{i}^{*}).

Geometric interpretation of integration

- $\int_{a}^{b} g(x) d x=(b-a) \times$ (average value of g on $\left.[a, b]\right)$.
- If $g \geq 0, \int_{a}^{b} g(x) d x$ gives the area under the graph of g over the interval $[a, b]$.
- If $g(x)$ is the linear density of a straight piece of wire with endpoints a and b, then $\int_{a}^{b} g(x) d x$ calculates the total mass of the wire.
- Furthermore, the point $\bar{x} \in[a, b]$ corresponding to the centre of mass of the wire is given by

$$
\bar{x}=\frac{\int_{a}^{b} x g(x) d x}{\int_{a}^{b} g(x) d x}
$$

Practice with integration

Let C be the semicircle given by $x^{2}+y^{2}=1, y \geq 0$, and consider $f(x, y)=y$.

Calculate $\int_{C} f d s$, using the parametrization $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$, $t \in[0, \pi]$.
(a) 1
(b) -1
(c) 0
(d) 2
(e) I don't know how.

Studying a wire

Suppose we have a wire bent in the shape of the semicircle C given by $x^{2}+y^{2}=1, y \geq 0$. Assume the wire has constant linear density ρ.

Use geometric intuition to guess the centre of mass from the options below.
(a) $(0,0)$
(b) $(0,1)$
(c) $(1,1)$
(d) $\left(\frac{2}{\pi}, \frac{2}{\pi}\right)$
(e) $\left(0, \frac{2}{\pi}\right)$

