Integrating functions over curves

Recall that for a (smooth) curve C parametrized by a vector-valued function \mathbf{r} over an interval $[a, b]$, and for a function $f: C \rightarrow \mathbb{R}$, we have

$$
\int_{C} f d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

This formula works whether C is a plane curve $\left(\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{2}\right)$ or a space curve $\left(\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}\right)$.

Compute $\int_{C} x^{2} z d s$ where C is the line segment from $(0,6,-1)$ to $(4,1,5)$.
(a) $\frac{56}{3} \sqrt{77}$
(c) $\frac{56}{3} \sqrt{15}$
(b) $\frac{14}{3} \sqrt{77}$
(d) $\frac{14}{3} \sqrt{15}$

Announcements

- Midterm 2 is on Tuesday, March 12 at 7 pm .
- Deadline to request a spot in the conflict exam is next Tuesday, March 5.
- Register your i-clicker! Deadline is this Saturday, March 2, at 5 pm .
- Check on Moodle: if you do not see any i-clicker grades, your registration has not gone through. Email me with your name, i-clicker number, and netid.
- Thanks for your feedback.
- Changes: bigger chalk, more examples, more slides when possible.
- Please continue to provide feedback (by email or anonymously e.g. through your TA).

An example of a vector field

https://earth.nullschool.net/

Matching a vector field with its plot

(a) $\mathbf{F}(x, y)=\langle\sin (x), 1\rangle$
(b) $\mathbf{F}(x, y)=\langle 1, \sin (y)\rangle$
(c) $\mathbf{F}(x, y)=\langle 1, \cos (y)\rangle$
(d) $\mathbf{F}(x, y)=\langle\sin (y), 1\rangle$
(e) I don't know how

Practice with integrating vector fields

Let $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle, t \in[0,1]$, and let $\mathbf{F}(x, y)=\langle y, x\rangle$. Sketch the curve and vector field. What can you say about $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
(a) It's positive.
(b) It's negative.
(c) It's zero.
(d) It's not defined.
(e) I don't know how to say anything about it.

Practice with integrating vector fields

Let C be parametrized by $\mathbf{r}(t)=\langle t, 2 t\rangle, t \in[0,1]$. Let $\mathbf{F}(x, y)=\langle 1,2 y\rangle$.

What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
(a) 9
(b) 5
(c) 0
(d) 20
(e) I don't know what to do.
(If you're done, sketch the curve and the vector field, and check whether your answer is a reasonable one.)

