Integrating functions over curves

Recall that for a (smooth) curve C parametrized by a vector-valued function **r** over an interval [a, b], and for a function $f : C \to \mathbb{R}$, we have

$$\int_C f \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt.$$

This formula works whether C is a plane curve $(\mathbf{r} : [a, b] \to \mathbb{R}^2)$ or a space curve $(\mathbf{r} : [a, b] \to \mathbb{R}^3)$.

Compute $\int_C x^2 z ds$ where C is the line segment from (0, 6, -1) to (4, 1, 5).

(a) $\frac{56}{3}\sqrt{77}$	(c) $\frac{56}{3}\sqrt{15}$
(b) $\frac{14}{3}\sqrt{77}$	(d) $\frac{14}{3}\sqrt{15}$
Correct answer: (a)	

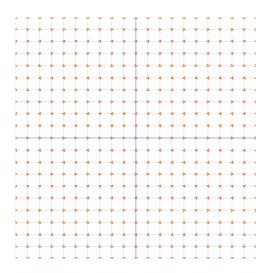
Announcements

- Midterm 2 is on Tuesday, March 12 at 7pm.
 - Deadline to request a spot in the conflict exam is next Tuesday, March 5.
- **Register your i-clicker!** Deadline is this Saturday, March 2, at 5pm.
 - Check on Moodle: if you do not see any i-clicker grades, your registration has not gone through. Email me with your name, i-clicker number, and netid.
- Thanks for your feedback.
 - Changes: bigger chalk, more examples, more slides when possible.
 - Please continue to provide feedback (by email or anonymously e.g. through your TA).

An example of a vector field

https://earth.nullschool.net/

Matching a vector field with its plot



(a)
$$\mathbf{F}(x, y) = \langle \sin(x), 1 \rangle$$

(b) $\mathbf{F}(x, y) = \langle 1, \sin(y) \rangle$
(c) $\mathbf{F}(x, y) = \langle 1, \cos(y) \rangle$
(d) $\mathbf{F}(x, y) = \langle \sin(y), 1 \rangle$
(e) I don't know how
Correct answer: (b)

Practice with integrating vector fields

Let $\mathbf{r}(t) = \langle t, t^2 \rangle, t \in [0, 1]$, and let $\mathbf{F}(x, y) = \langle y, x \rangle$. Sketch the curve and vector field. What can you say about $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$?

- (a) It's positive.
- (b) It's negative.
- (c) It's zero.
- (d) It's not defined.
- (e) I don't know how to say anything about it.

Correct answer: (a)

Practice with integrating vector fields

Let $\mathbf{r}(t) = \langle t, t^2 \rangle, t \in [0, 1]$, and let $\mathbf{F}(x, y) = \langle y, x \rangle$ (as on the previous slide).

- $\mathbf{F}(\mathbf{r}(t)) = \langle t^2, t \rangle.$
- $\mathbf{r}'(t) = \langle 1, 2t \rangle.$

It follows that

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \langle t^{2}, t \rangle \cdot \langle 1, 2t \rangle dt$$
$$= \int_{0}^{1} 3t^{2} dt$$
$$= [t^{3}]_{0}^{1} = 1.$$

(Note that this is positive.)

Practice with integrating vector fields

Let C be parametrized by $\mathbf{r}(t) = \langle t, 2t \rangle$, $t \in [0, 1]$. Let $\mathbf{F}(x, y) = \langle 1, 2y \rangle$.

What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- (a) 9
- (b) 5
- (c) 0

(d) 20

(e) I don't know what to do.

(If you're done, sketch the curve and the vector field, and check whether your answer is a reasonable one.) Correct answer: (b)

Solution:

Let C be parametrized by $\mathbf{r}(t) = \langle t, 2t \rangle$, $t \in [0, 1]$. Let $\mathbf{F}(x, y) = \langle 1, 2y \rangle$.

- $\mathbf{F}(\mathbf{r}(t)) = \langle 1, 4t \rangle$.
- $\mathbf{r}'(t) = \langle 1, 2 \rangle$.

$$\Rightarrow \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \langle 1, 4t \rangle \cdot \langle 1, 2 \rangle dt$$
$$= \int_{0}^{1} 1 + 8t \ dt$$
$$= [t + 4t^{2}]_{0}^{1}$$
$$= 5.$$