Last time: vector fields

Let C be the line segment from (0,0) to (1,2). Consider the vector field $\mathbf{F}(x,y) = \langle 1, 2y \rangle$.

What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- (a) 9
- (b) 5
- (c) 0

(d) 20

(e) I don't know what to do.

(If you're done, sketch the curve and the vector field, and check whether your answer is a reasonable one.) Correct answer: (b)

Solution:

Let C be parametrized by $\mathbf{r}(t) = \langle t, 2t \rangle$, $t \in [0, 1]$. We have $\mathbf{F}(x, y) = \langle 1, 2y \rangle$.

•
$$\mathbf{F}(\mathbf{r}(t)) = \langle 1, 4t \rangle.$$

•
$$\mathbf{r}'(t) = \langle 1, 2 \rangle.$$

$$\Rightarrow \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \langle 1, 4t \rangle \cdot \langle 1, 2 \rangle dt$$

$$=\int_0^1 1+8t \ dt$$

$$= [t+4t^2]_0^1$$

Computing the integral of a vector field using the unit tangent vector

Consider the circle $C = \{x^2 + y^2 = 1\}$ oriented clockwise. Use the formula

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} ds$$

to find $\int_C \langle y, -x \rangle \cdot d\mathbf{r}$, without choosing a specific parametrization of C.

- (a) π
- (b) $-\pi$
- (c) 2π Correct answer
- (d) -2π
- (e) I don't know how.

If you're done, choose a parametrization and check your answer by computing the integral using the original definition.

Solution

Note that at a point P = (x, y) of the circle, $\mathbf{F}(P)$ is a unit vector (check the definiton) and $\mathbf{T}(P)$ is also a unit vector (by construction).

Also, both are tangent to the circle and point clockwise.

So $\mathbf{F}(P) = \mathbf{T}(P)$ and $\mathbf{F}(P) \cdot \mathbf{T}(P) = |\mathbf{F}(P)|^2 = 1$.

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$
$$= \int_{C} ds$$
$$= I = 2\pi.$$

Practice with the fundamental theorem of line integrals

Let *C* be a circle in \mathbb{R}^2 with centre *P* and radius *r*. Let $f(x, y) = 3x^2 + sin(x + y)$, and let $\mathbf{F} = \nabla f$.

What is $\int_C \mathbf{F} \cdot d\mathbf{r}$?

- (a) Not enough information: I can't do it unless you tell me the starting and ending points of the path.
- (b) Not enough information: I can't do it because you haven't told me the orientation of the circle.
- (c) I think I can do it, but I need more time to compute this integral.
- (d) It's zero.

Correct answer: (d)

Is the vector field conservative?

We're going to look at the vector field describing wind velocity. Discuss with your neighbour: is this vector field conservative? https://earth.nullschool.net/ (Remember the options below:)

- (a) Yes, we think it is.
- (b) No, we think it's not.
- (c) We don't agree/we don't know.

Answer: the vector field is not conservative. You can find circles around which the integral is not zero.