Last time: vector fields

Let C be the line segment from $(0,0)$ to $(1,2)$. Consider the vector field $\mathbf{F}(x, y)=\langle 1,2 y\rangle$.

What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
(a) 9
(b) 5
(c) 0
(d) 20
(e) I don't know what to do.
(If you're done, sketch the curve and the vector field, and check whether your answer is a reasonable one.)
Correct answer: (b)

Solution:

Let C be parametrized by $\mathbf{r}(t)=\langle t, 2 t\rangle, t \in[0,1]$. We have $\mathbf{F}(x, y)=\langle 1,2 y\rangle$.

- $\mathbf{F}(\mathbf{r}(t))=\langle 1,4 t\rangle$.
- $\mathbf{r}^{\prime}(t)=\langle 1,2\rangle$.

$$
\begin{gathered}
\Rightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\langle 1,4 t\rangle \cdot\langle 1,2\rangle d t \\
=\int_{0}^{1} 1+8 t d t \\
=\left[t+4 t^{2}\right]_{0}^{1} \\
=5
\end{gathered}
$$

Computing the integral of a vector field using the unit tangent vector

Consider the circle $C=\left\{x^{2}+y^{2}=1\right\}$ oriented clockwise. Use the formula

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

to find $\int_{C}\langle y,-x\rangle \cdot d \mathbf{r}$, without choosing a specific parametrization of C.
(a) π
(b) $-\pi$
(c) 2π Correct answer
(d) -2π
(e) I don't know how.

If you're done, choose a parametrization and check your answer by computing the integral using the original definition.

Solution

Note that at a point $P=(x, y)$ of the circle, $\mathbf{F}(P)$ is a unit vector (check the definiton) and $\mathbf{T}(P)$ is also a unit vector (by construction).

Also, both are tangent to the circle and point clockwise.
So $\mathbf{F}(P)=\mathbf{T}(P)$ and $\mathbf{F}(P) \cdot \mathbf{T}(P)=|\mathbf{F}(P)|^{2}=1$.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \mathbf{F} \cdot \mathbf{T} d s \\
& =\int_{C} d s \\
& =L=2 \pi
\end{aligned}
$$

Practice with the fundamental theorem of line integrals

Let C be a circle in \mathbb{R}^{2} with centre P and radius r. Let $f(x, y)=3 x^{2}+\sin (x+y)$, and let $\mathbf{F}=\nabla f$.

What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?
(a) Not enough information: I can't do it unless you tell me the starting and ending points of the path.
(b) Not enough information: I can't do it because you haven't told me the orientation of the circle.
(c) I think I can do it, but I need more time to compute this integral.
(d) It's zero.

Correct answer: (d)

Is the vector field conservative?

We're going to look at the vector field describing wind velocity. Discuss with your neighbour: is this vector field conservative? https://earth.nullschool.net/
(Remember the options below:)
(a) Yes, we think it is.
(b) No, we think it's not.
(c) We don't agree/we don't know.

Answer: the vector field is not conservative. You can find circles around which the integral is not zero.

