Last time: integrating vector fields

Let
$$C_1 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } y \ge 0\}.$$

Let $C_2 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } y \le 0\}$
Orient both from $(-1, 0)$ to $(1, 0)$.
Let $\mathbf{F}(x, y) = \langle -y, x \rangle.$

Use $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds$ to calculate

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

(c)
$$-2\pi$$

(d) $-\pi$

(e) I don't know what to do.

Example 1

Let $\mathbf{F} = \nabla f$ be a conservative vector field on \mathbf{R}^2 or \mathbf{R}^3 , and let C be a curve with initial point P and terminal point Q. Assume that ∇f is continuous.

The Fundamental Theorem of Line Integrals tells us that

$$\int_C \nabla f \cdot d\mathbf{r} = f(Q) - f(P).$$

This implies that **F** is independent of path.

Example 2

Let
$$\mathbf{F}(x, y) = \langle -y, x \rangle$$
.

At the beginning of class, we found two curves C_1 and C_2 with the same initial point (-1,0) and the same terminal point (1,0), but we showed that the integrals of **F** over C_1 and C_2 were not equal.

So **F** is not path independent.

Remark: Combining this observation with the previous slide, we can conclude that **F** is not conservative.

Is the vector field conservative?

We're going to look at the vector field describing wind velocity. Discuss with your neighbour: is this vector field conservative? https://earth.nullschool.net/ (Remember the options below:)

- (a) Yes, we think it is.
- (b) No, we think it's not.
- (c) We don't agree/we don't know.

Comments on the proof

Theorem: For *D* open and connected, the integral of **F** is path independent \Leftrightarrow **F** is conservative.

We have to prove two things.

- The integral of ${\bf F}$ is path independent $\Rightarrow {\bf F}$ is conservative.
- The vector field **F** is conservative ⇒ the integral is path independent.

We already showed the second line, using the Fundamental Theorem of Line Integrals.

The integral of ${\bf F}$ is path independent \Rightarrow ${\bf F}$ is conservative.

We're mostly going to skip the proof, but here is the main idea.

Choose any point P in D.

Define $f : D \to \mathbb{R}$ as follows.

Given any point Q in D, choose a path C from P to Q. We can do this because D is connected!

Now let $f(Q) = \int_C \mathbf{F} \cdot d\mathbf{r} \in \mathbb{R}$. It doesn't matter what path *C* we chose, because the integral is path independent!

We claim that $\nabla f = F$, which shows that F is conservative.