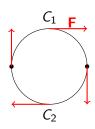
Last time: integrating vector fields

Let $C_1 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } y \ge 0\}.$

Let $C_2 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } y \le 0\}$

Orient both from (-1,0) to (1,0).

Let $\mathbf{F}(x,y) = \langle y, -x \rangle$. (Note: I had the opposite sign on the slide in class, but that was wrong.)


Use $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} ds$ to calculate

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$

- (a) 0
- (b) 2π
- (c) -2π
- (d) $-\pi$
- (e) I don't know what to do.

Correct answer: (b)

Solution

For
$$C_1$$
:
 $\mathbf{F} = \mathbf{T}$, so

$$\int_{C_1} \mathbf{F} \cdot \mathbf{T} ds = \int_{C_1} |\mathbf{T}|^2 ds$$
 $= \int_{C_1} 1 ds = \pi.$

For C_2 :

$$\mathbf{F} = -\mathbf{T}$$
, so

$$\int_{C_2} \mathbf{F} \cdot \mathbf{T} ds = \int_{C_2} (-1) ds = -\pi.$$

So
$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \pi - (-\pi) = 2\pi$$
.

Example 1

Let $\mathbf{F} = \nabla f$ be a conservative vector field on \mathbf{R}^2 or \mathbf{R}^3 , and let C be a curve with initial point P and terminal point Q. Assume that ∇f is continuous.

The Fundamental Theorem of Line Integrals tells us that

$$\int_C \nabla f \cdot d\mathbf{r} = f(Q) - f(P).$$

This implies that **F** is independent of path.

Example 2

Let
$$\mathbf{F}(x,y) = \langle -y, x \rangle$$
.

At the beginning of class, we found two curves C_1 and C_2 with the same initial point (-1,0) and the same terminal point (1,0), but we showed that the integrals of \mathbf{F} over C_1 and C_2 were not equal.

So **F** is not path independent.

Remark: Combining this observation with the previous slide, we can conclude that **F** is not conservative.

Is the vector field conservative?

We're going to look at the vector field describing wind velocity. Discuss with your neighbour: is this vector field conservative? https://earth.nullschool.net/ (Remember the options below:)

- (a) Yes, we think it is.
- (b) No, we think it's not.
- (c) We don't agree/we don't know.

Answer: the vector field is not conservative. You can find circles around which the integral is not zero.

Comments on the proof

Theorem: For D open and connected, the integral of \mathbf{F} is path independent $\Leftrightarrow \mathbf{F}$ is conservative.

We have to prove two things.

- The integral of F is path independent ⇒ F is conservative.
- The vector field **F** is conservative ⇒ the integral is path independent.

We already showed the second line, using the Fundamental Theorem of Line Integrals.

The integral of **F** is path independent \Rightarrow **F** is conservative.

We're mostly going to skip the proof, but here is the main idea.

Choose any point P in D.

Define $f: D \to \mathbb{R}$ as follows.

Given any point Q in D, choose a path C from P to Q. We can do this because D is connected!

Now let $f(Q) = \int_C \mathbf{F} \cdot d\mathbf{r} \in \mathbb{R}$. It doesn't matter what path C we chose, because the integral is path independent!

We claim that $\nabla f = F$, which shows that F is conservative.