Last time: iterated integrals

Let $D=[0,2] \times[-3,1]$. Find $\iint\left(3 x^{2}+3 y^{2}\right) d A$.
(a) -12
(b) 42
(c) 88
(d) Some other number
(e) I don't know
(If you're done, try integrating using the opposite order of integration to what you used the first time. You should get the same answer.)

Solution

$$
\begin{aligned}
\iint_{D}\left(3 x^{2}+3 y^{2}\right) d A & =\int_{0}^{2} \int_{-3}^{1}\left(3 x^{2}+3 y^{2}\right) d y d x \\
& =\int_{0}^{2}\left[3 x^{2} y+y^{3}\right]_{-3}^{1} d x \\
& =\int_{0}^{2}\left[\left(3 x^{2}+1\right)-\left(-9 x^{2}-27\right)\right] d x \\
& =\int_{0}^{2} 12 x^{2}+28 d x \\
& =\left[4 x^{3}+28 x\right]_{0}^{2} \\
& =32+56=88
\end{aligned}
$$

Solution (opposite order)

$$
\begin{aligned}
\iint_{D}\left(3 x^{2}+3 y^{2}\right) d A & =\int_{-3}^{1} \int_{0}^{2}\left(3 x^{2}+3 y^{2}\right) d x d y \\
& =\int_{-3}^{1}\left[x^{3}+3 x y^{2}\right]_{0}^{2} d y \\
& =\int_{-3}^{1}\left[8+6 y^{2}\right] d y \\
& =\left[8 y+2 y^{3}\right]_{-3}^{1} \\
& =(8+2)-(-24-54) \\
& =88 .
\end{aligned}
$$

Recall: Fubini's Theorem

Theorem

Let f be a continuous function on $D=[a, b] \times[c, d]$. Then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

More generally, this is true if f is bounded and is continous except at a finite number of smooth curves, provided that the iterated integrals exist.

Regions of Type I

We say $D \subset \mathbb{R}^{2}$ is of Type I if it is of the form

$$
D=\left\{(x, y) \mid a \leq x \leq b \text { and } g_{1}(x) \leq y \leq g_{2}(y)\right\}
$$

where $g_{1}, g_{2}:[a, b] \rightarrow \mathbb{R}$ are continous functions.

Theorem

Let $f(x, y)$ be a continous function on a region D of type I as above. Then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Practice with regions of type II

Recall the region D enclosed by the lines $x=0, y=1$, and the curve $y=x^{2}$.

To show that D is a region of type II, we need to find numbers c and d and continuous functions h_{1}, h_{2} on the interval $[c, d]$ such that

$$
D=\left\{(x, y) \mid a \leq x \leq b \text { and } g_{1}(x) \leq y \leq g_{2}(y)\right\}
$$

(a) I don't know what to do.
(b) I'm working on it.
(c) I have answers, but they don't match with my neighbour's.
(d) We agree.

Solution

To find the interval c and d we look at the "shadow" produced by the region D on the y-axis. (Pretend a big light is shining from the far right side.)

So we see that $[c, d]=[0,1]$.
Now given a point y_{0} in this interval, what values can x take?
x must be larger than $\sqrt{y_{0}}$ and smaller than 1 .
So $h_{1}(y)=\sqrt{y}$ and $h_{2}(y)=1$.

Integrating over a region of type II

Let $D=\{(x, y) \mid 0 \leq y \leq 1$ and $\sqrt{y} \leq x \leq 1\}$. How would you find the area of D ? Fill in the blanks in the following formula:

$$
\text { Area of } D=\int_{?}^{?} \int_{?}^{?} ? d ? d ?
$$

(a) I don't know what to do.
(b) I'm working on it.
(c) I have answers, but they don't match with my neighbour's.
(d) We agree.

Solution

$D=\{(x, y) \mid 0 \leq y \leq 1$ and $\sqrt{y} \leq x \leq 1\}$
The area of D is $\iint_{D} 1 d A$; since D is of type II we have

$$
\iint_{D} 1 d A=\int_{0}^{1} \int_{\sqrt{y}}^{1} 1 d x d y .
$$

Practice with integrating over polar rectangles

Let $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4\right.$ and $\left.0 \leq y\right\}$ as before. What is

$$
\iint_{D} y d A ?
$$

(a) 0
(b) $\frac{14}{3}$
(c) 3
(d) $3 \pi y^{2}$
(e) I don't know.

Solution

Since D is a polar rectangle of the form with $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi$, we have

$$
\begin{aligned}
\iint_{D} y d A & =\int_{0}^{\pi} \int_{1}^{2}(r \sin \theta) r d r d \theta \\
& =\int_{0}^{\pi} \int_{1}^{2} r^{2} \sin \theta d r d \theta \\
& =\int_{0}^{\pi}\left[\frac{1}{3} r^{3} \sin \theta\right]_{1}^{2} d \theta \\
& =\int_{0}^{\pi} \frac{7}{3} \sin \theta d \theta \\
& =\left[\frac{-7}{3} \cos \theta\right]_{0}^{\pi} \\
& =\frac{14}{3}
\end{aligned}
$$

