Last time: integrating in polar coordinates

The equation $r=\cos 2 \theta$ traces out a "four-leafed rose" as θ varies. In particular, a leaf or petal of the rose is the region enclosed one loop of the curve, given by

$$
D=\left\{(r, \theta) \left\lvert\, \frac{-\pi}{4} \leq \theta \frac{\pi}{4}\right., 0 \leq r \leq \cos 2 \theta\right\}
$$

Sketch the curve. Which formula can be used to calculate the area of this leaf?
(a) $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\cos 2 \theta} d r d \theta$
(b) $2 \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos 2 \theta} r d r d \theta$
(c) $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\cos 2 \theta} r d r d \theta$
(d) $\int_{0}^{\cos 2 \theta} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} r d \theta d r$

Correct answer: (b)
(because of
symmetry of the leaf) or (c).
(e) I don't know.

Solution

$$
\begin{aligned}
\operatorname{Area}(\mathrm{D}) & =\iint_{D} d A \\
& =\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\cos 2 \theta} r d r d \theta \\
& =\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}\left[\frac{1}{2} r^{2}\right]_{0}^{\cos 2 \theta} d \theta \\
& =\frac{1}{2} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta d \theta \\
& =\frac{1}{4} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}(1+\cos 4 \theta) d \theta \\
& =\frac{1}{4}\left[\theta+\frac{1}{4} \sin 4 \theta\right]_{\frac{-\pi}{4}}^{\frac{\pi}{4}}=\frac{\pi}{8}
\end{aligned}
$$

Practice with triple integrals

We wrote

$$
E=\left\{(x, y, z) \mid(x, z) \in D_{2}, x^{2}+z^{2} \leq y \leq 4\right\}
$$

where $D_{2}=\left\{(x, z) \mid x^{2}+z^{2} \leq 4\right\}$. so

$$
\begin{aligned}
V(E) & =\iiint_{E} d V \\
& =\iint_{D_{2}} \int_{x^{2}+z^{2}}^{4} d y d A \\
& =\iint_{D_{2}}[y]_{x^{2}+z^{2}}^{4} d A \\
& =\iint_{D_{2}} 4-x^{2}-z^{2} d A
\end{aligned}
$$

Practice with triple integrals

So we need to calculate $\iint_{D_{2}} 4-x^{2}-z^{2} d A$. We could write D_{2} as a region of type I or II, but it is easier to use polar coordinates (in the $x z$-plane):

$$
\begin{gathered}
x=r \cos \theta, \quad z=r \sin \theta \\
\iint_{D_{2}} 4-x^{2}-z^{2} d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta \\
\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} d \theta \\
\int_{0}^{2 \pi} 4 d \theta=8 \pi
\end{gathered}
$$

Practice with triple integrals

E is the region bounded by the planes $x=2, y=2, z=0$ and $x+y-2 z=2$, and D is its triangular shadow in the $x y$-plane.

Fill in the blanks, and discuss with your neighbour:

$$
D=\{(x, y) \mid ? \leq x \leq ?, ? ? \leq y \leq ? ?\} .
$$

(a) We're working on it.
(b) We're stuck.
(c) We have answers, but they're different and we don't know who is right.
(d) We have the same answer.

Solution

$$
D=\{(x, y) \mid 0 \leq x \leq 2,2-x \leq y \leq 2\} .
$$

Practice with triple integrals

Now find $u_{1}(x, y)$ and $u_{2}(x, y)$ such that

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\} .
$$

(a) We're working on it.
(b) We're stuck.
(c) We have answers, but they're different and we don't know who is right.
(d) We have the same answer.

Solution

$$
\begin{aligned}
& u_{1}(x, y)=0 \\
& u_{2}(x, y)=\frac{x}{2}+\frac{y}{2}-1 .
\end{aligned}
$$

So if f is a function on E, then

$$
\iiint_{E} f d V=\int_{0}^{2} \int_{2-x}^{2} \int_{0}^{\frac{x}{2}+\frac{y}{2}-1} f d z d y d x
$$

