Last time: cylindrical and spherical coordinates

Recall that (x, y, z) and (ρ, θ, ϕ) are related by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

Consider the solid C lying between the half-cone $z=\sqrt{x^{2}+y^{2}}$ and the half-sphere $z=\sqrt{9-x^{2}-y^{2}}$. Sketch C and write it in spherical coordinates:

$$
C=\{(\rho, \theta, \phi) \mid \square \leq \theta \leq \square, \square \leq \phi \leq \square, \square \leq \rho \leq \square\}
$$

What is the sum of the numbers in the boxes?
(a) $9+\frac{5 \pi}{4}$
(b) $3+\frac{5 \pi}{4}$
(c) $3+3 \pi$
(d) $9+3 \pi$

Announcements

The American Society of Mechanical Engineers at the University of Illinois wants you to sign up for their talent show. Here is a link to their poster:
Poster.

Recall: Integrating in spherical coordinates

Let B be a "spherical wedge":

$$
B=\{(\rho, \theta, \phi) \mid \alpha \leq \theta \leq \beta, a \leq \rho \leq b, c \leq \phi \leq d\}
$$

Let $f: B \rightarrow \mathbb{R}$ be a continuous function. Then

$$
\iiint_{B} f d V=
$$

$\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi$.

Example

Let's find the volume of the solid C from the first question.

$$
C=\left\{(\rho, \theta, \phi) \mid 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{4}, 0 \leq \rho \leq 3\right\}
$$

So we have

$$
\begin{aligned}
V(C) & =\iiint_{C} d V \\
& =\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi}\left[\frac{1}{3} \rho^{3} \sin \phi\right]_{0}^{3} d \theta d \phi \\
& =\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} 9 \sin \phi d \theta d \phi \\
& =\int_{0}^{\frac{\pi}{4}} 18 \sin \phi d \phi=9 \pi(2-\sqrt{2})
\end{aligned}
$$

Practice with Jacobians

Find the Jacobian for each of the examples (1), (2), (3). Which is the largest?
(a) (1)
(b) (2)
(c) (3)
(d) It's a tie.
(e) I don't know how to do this.

Change of variables - why does it work?

We calculate $\iint_{T(D)} f(x, y) d A$ by dividing D into small boxes \square of area ΔA.

Then $T(D)$ is divided into small parallelograms $T(\square)$ of area $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta A$.

We should choose test points $\left(x^{*}, y^{*}\right)$ in each $T(\square)$. We do this by choosing points (u^{*}, v^{*}) in \square, and taking $\left(x^{*}, y^{*}\right)=T\left(u^{*}, v^{*}\right)$.

Then to compute the integral, we take the sum over all the parallelograms of the contribution

$$
f\left(x^{*}, y^{*}\right) \cdot \operatorname{Area}(T(\square))=f\left(T\left(u^{*}, v^{*}\right)\right) \cdot\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta A,
$$

and taking the limit as the number of boxes goes to infinity.
But this is just the integral $\iint_{D} f(T(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A$.

