Last time: linear change of coordinates

Recall that for a linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & u_{v}
\end{array}\right|
$$

we have the following formula:

$$
\iint_{T(D)} f(x, y) d A=\iint_{D} f(T(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A
$$

Use this to calculate the area of the ellipse $B=\left\{\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}} \leq 1\right\}$, by finding a linear transformation T with $T(D)=B$, where B is the unit disk $\left\{u^{2}+v^{2} \leq 1\right\}$.
a I don't know what to do.
b I found T, but now I don't know what to do.
c I found T and the Jacobian, but I'm stuck now.
d I'm done.

Practice with image and one-to-one

Let $T(r, \theta)=(r \cos \theta, r \sin \theta)$.
Let $D=[0, \infty) \times[0,2 \pi)$. Is the image of T all of \mathbb{R}^{2} ? Is T one-to-one on D ?
(a) Yes and yes.
(b) Yes and no.
(c) No and yes.
(d) No and no.
(e) I don't know.

Practice with image and one-to-one

Let $T(r, \theta)=(r \cos \theta, r \sin \theta)$.
Let $D=(0, \infty) \times[0,2 \pi)$. Is the image of T all of \mathbb{R}^{2} ? Is T one-to-one on D ?
(a) Yes and yes.
(b) Yes and no.
(c) No and yes.
(d) No and no.
(e) I don't know.

Practice with the Jacobian

Let $T(u, v)=\left(\frac{u^{2}}{v}, \frac{v}{u}\right)$. Find $\frac{\partial(x, y)}{\partial(u, v)}$.
(a) $\frac{3}{v}$
(b) $\frac{1}{v}$
(c) $2 v+\frac{1}{v}$
(d) $u+v$
(e) I don't know how.

Change of coordinates in three-dimensions

Theorem

Let T be a transformation from $D \subset \mathbb{R}^{3}$ to \mathbb{R}^{3} such that

- D and $T(D)$ are "nice";
- $\frac{\partial(x, y, z)}{\partial(u, v, w)} \neq 0$ and T is one-to-one on D except possibly on the boundary.
Suppose f is a continous function on $T(D)$. Then

$$
\iiint_{T(D)} f(x, y, z) d V_{x y z}=\iiint_{D} f(T(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d V_{u v w}
$$

