Last time: Green's theorem

Let $D \subset \mathbb{R}^{2}$ be such that ∂D is formed of one or more simple closed curves. Suppose $\mathbf{F}=\langle P, Q\rangle$ is a vector field such that P and Q have continuous first order partial derivatives. Then

$$
\iint_{D}\left(Q_{x}-P_{y}\right) d A=\int_{\partial D} P d x+Q d y=\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}
$$

Consider the picture on the chalkboard with paths C_{1}, C_{2}, C_{3}. Suppose that $Q_{x}=P_{y}$ on D and also suppose that $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=3$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=1$. What is $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}$?
(a) 0
(b) 2
(c) 4
(d) We don't have enough information.

Solution

Fill in the space surrounded by the curves C_{1}, C_{2}, C_{3} to get a region D with boundary $\partial D=\left(-C_{1}\right) \cup\left(-C_{2}\right) \cup C_{3}$.

So we see that

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=-\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}
$$

On the other hand, by Green's theorem,

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} Q_{x}-P_{y} d A
$$

but since $P_{y}=Q_{x}$ this is zero. Combining, we see that

$$
0=-\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=-3-1+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}
$$

so $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=4$.

Practice with curl

Find $\operatorname{curl}\left\langle e^{x}, z \cos y, \sin y\right\rangle$. How many of the three components are 0 ?
(a) 0
(b) 1
(c) 2
(d) 3
(e) I don't know.
$\operatorname{curl}\left\langle e^{x}, z \cos y, \sin y\right\rangle=\langle\cos y-\cos y, 0-0,0-0\rangle=\langle 0,0,0\rangle$

Practice with curl

Find $\operatorname{curl}\langle P(x, y), Q(x, y), 0\rangle$.
Solution

$$
\begin{aligned}
\operatorname{curl}\langle P(x, y), Q(x, y), 0\rangle & =\left\langle\frac{\partial 0}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial 0}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle \\
& =\left\langle 0,0, Q_{x}-P_{y}\right\rangle .
\end{aligned}
$$

Practice with conservative vector fields and curl

Is $\mathbf{F}(x, y, z)=\left\langle x z, x y z,-y^{2}\right\rangle$ conservative?
Is $\mathbf{G}(x, y, z)=\left\langle e^{x}, z \cos y, \sin y\right\rangle$ conservative?
(a) Yes and yes.
(b) Yes and no.
(c) No and yes.
(d) No and no.
(e) Not enough information.
curl $\mathbf{F} \neq \mathbf{0}$, so \mathbf{F} is not conservative.
curl $\mathbf{G}=\mathbf{0}$ on all of \mathbb{R}^{3}, so \mathbf{G} is conservative.

