Last time: integrating vector fields on surfaces

- $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
- If $\mathbf{r}(u, v),(u, v) \in D$ is a parametrization of S such that $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is positively oriented, then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A
$$

Let $S=\{3 x+2 y+z=1, x \geq 0, y \geq 0, z \geq 0\}$, oriented upward. S is parametrized by $\mathbf{r}(u, v)=\langle u, v, 1-3 u-2 v\rangle$, where $(u, v) \in D=\{u \geq 0, v \geq 0,3 u+2 v \leq 1\}$.
Sketch S and D. Find $\mathbf{r}_{u} \times \mathbf{r}_{v}$. Is it positively oriented?
(a) Yes, it is positively oriented.
(b) No, it is negatively oriented.
(c) I don't remember what that means.

Practice with Stokes' Theorem

Let $\mathbf{F}=\left\langle x \sin z, y \sin z, e^{x+y}\right\rangle$, and let $S=\left\{x^{2}+y^{2}+z^{2}=9\right\}$, oriented outwards.

Find \iint_{S} curlF $\cdot d \mathbf{S}$.
(a) -12π
(b) -9
(c) 0
(d) 9
(e) 12π

