Last time: oriented surfaces and their boundaries

- Point your head in the direction of the positive unit normal vector n.
- Orient ∂S so that S is to your left as you walk along ∂S.

Example: Consider the surface of the unit cube $[0,1] \times[0,1] \times[0,1]$, oriented outwards.

Let S_{1} be the bottom and sides of the cube, and let S_{2} be the top of the cube, so ∂S_{1} and ∂S_{2} are oriented curves.
(a) $\partial S_{1}=\partial S_{2}$
(b) $\partial S_{1}=-\partial S_{2}$
(c) Neither is true.
(d) I don't know.

Announcements

- Deadline to request a regrade for midterm 3 is this Thursday.
- Final exam is next Friday. (!) I will organize some kind of review session next Wednesday/Thursday/Friday. Fill out the survey on the course webpage indicating your availability if you're interested.

More on Stokes' Theorem and Curl

Recall:

- We assume we have a vector field \mathbf{F} defined on some open region $D \subset \mathbb{R}^{3}$, with continuous first order partial derivatives on D.
- S is an oriented surface contained in D. We assume S is "nice":
- S is piecewise smooth.
- ∂S consists of one or more simple closed paths.

Theorem (Stokes' Theorem)

$$
\iint_{S} c u r l \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot d \mathbf{r} .
$$

More on Stokes' Theorem and Curl

Let \mathbf{F} be the velocity field of a fluid flow in \mathbb{R}^{3}. Choose a point P in \mathbb{R}^{3}, and choose any vector unit vector \mathbf{n} at P.

Let D be a small disk with centre P and unit normal \mathbf{n}, and place a tiny paddle wheel at P with its axis of rotation in direction \mathbf{n}.

The counterclockwise force on the wheel is related to the circulation of \mathbf{F} around ∂D :

$$
\sim \int_{\partial D} \mathbf{F} \cdot d \mathbf{r} .
$$

But by Stokes' theorem, this is

$$
\iint_{D} \operatorname{curlF} \cdot \mathbf{n} d A .
$$

The counterclockwise force on the wheel is related to the circulation of \mathbf{F} around ∂D :

$$
\sim \int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d A .
$$

We approximate the function curlF $\cdot \mathbf{n}$ over the small disk D by its value at the centre point P.

- The wheel rotates counterclockwise if curlF $\cdot \mathbf{n}>0$ at P.
- It rotates clockwise if curlF $\cdot \mathbf{n}<0$ at P.
- It doesn't rotate at all if curlF $\cdot \mathbf{n}=0$.

The speed of rotation is related to \mid curl $\cdot \mathbf{n} \mid$.
If we want to place a tiny wheel at P oriented so that it will spin as quickly as possible, we should choose the angle/direction \mathbf{n} so that \mid curl $\cdot \mathbf{n} \mid$ is as large as possible.
i.e. we should choose \mathbf{n} to be pointing in the same direction (\pm) as curl.

Analogy

If f is a function, the gradient $\nabla f(P)$ points in the direction we should face if we want to increase as quickly as possible.

If \mathbf{F} is a vector field, the curl $\nabla \times \mathbf{F}(P)$ points in the direction we should stand if we want to be spun around as quickly as possible.

Practice with Stokes' theorem: computing a hard surface integral by changing it into an easy surface integral

Let S be the blob drawn on the board, oriented outward, with boundary edges of the square $[0,1] \times[0,1] \times\{1\}$.
Let \mathbf{F} be as before.
What is \iint_{S} curlF $\cdot d \mathbf{S}$?
(a) -1
(b) 0
(c) 1
(d) Not enough information.
(e) I don't know.

Practice with Stokes' theorem

$$
\mathbf{F}=\left\langle\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}, e^{z^{2}}\right\rangle .
$$

This is defined everywhere except the z-axis, $\{x=y=0\}$. Claim:

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\frac{y}{x^{2}+y^{2}} & \frac{-x}{x^{2}+y^{2}} & e^{z^{2}}
\end{array}\right|=\mathbf{0} .
$$

ST: Converting a hard line integral to an easy surface integral

Let C_{1} be the curve parametrized by $\mathbf{r}_{1}(\theta)=\langle 4 \cos \theta-\cos 4 \theta, 1,4 \sin \theta-\sin 4 \theta\rangle, 0 \leq \theta \leq 2 \pi$.

Let S be the surface we get by filling in the curve in the $y=1$ plane. Observe that S doesn't intersect the z-axis, so \mathbf{F} is defined on all of S.

Orient S so that $\partial S=C_{1}$. Then Stokes' Theorem says:

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0
$$

More practice with Stokes' Theorem

Let \mathbf{F} be as before, but now let C_{2} be the curve parametrized by $\mathbf{r}_{2}(\theta)=\langle 4 \cos \theta-\cos 4 \theta, 4 \sin \theta-\sin 4 \theta, 1\rangle, 0 \leq \theta \leq 2 \pi$.

Does the previous argument work to show that $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=0$? Why or why not?
(a) No.
(b) Yes.

