Last time: More on Stokes' theorem

Consider the complicated surface S drawn on the board. Let $\mathbf{F}=\langle P, Q, R\rangle$ be a vector field (with continuous first order partial derivatives) defined on an open set D containing S. What can you say about \iint_{S} curlF $\cdot d \mathbf{S}$?
(a) It's zero, because ∂S is empty.
(b) It's not defined unless \mathbf{F} is defined over the entire solid bounded by the surface S.
(c) We can't say anything unless we know more about \mathbf{F}.
(d) I don't know.

If you want to come to extra office hours/review session, fill out the form on the course diary. You can do it right now, if you're done!

Physical meaning of div

Recall that for a fluid flow \mathbf{F}, the flux of \mathbf{F} across an oriented surface S measures the amount of fluid crossing S (in the direction of the positive normal vector) in unit time. It is calculated by

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d \mathbf{S}
$$

So if S is the boundary of some solid E (oriented to point away from E), the Divergence Theorem tells us that

$$
\text { Flux }=\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

Physical meaning of div

So

$$
\text { Flux }=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

If E is a tiny ball with volume $V(E)$ centered around a point P, we approximate the flux as follows:

$$
\begin{aligned}
\iiint_{E} \operatorname{div} \mathbf{F} d V & =V(E) \cdot(\text { average value of } \operatorname{div} \mathbf{F} \text { on } E) \\
& \approx V(E) \cdot \operatorname{div} \mathbf{F}(P)
\end{aligned}
$$

So

- Fluid is leaving E when $\operatorname{div} \mathbf{F}(P)>0$-we say P is a source
- Fluid is entering E when $\operatorname{div} \mathbf{F}(P)<0$-we say P is a sink
- If $\operatorname{div} \mathbf{F}(P)=0$, the total amount of fluid leaving E is equal to the total amount of fluid entering E.

Calculating flux using the divergence theorem

Given E, S and S^{\prime} as on the board, what is

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} ?
$$

(a) 16
(b) 4
(c) -4
(d) -12
(e) I don't know.

Summary: We wanted to find the integral of \mathbf{F} over $S . S$ was pretty hard, because it has five faces.

But we could put a lid S^{\prime} on S, making it into the boundary of a solid box E.

- So $\iint_{S} \mathbf{F} \cdot d \mathbf{S}+\iint_{S^{\prime}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}$.
- $\iint_{S^{\prime}} \mathbf{F} \cdot d \mathbf{S}$ is pretty easy to compute.
- $\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}$ would be hard to compute directly (because it has six faces!), but it's the boundary of a solid E, so we have a trick-the divergence theorem tells us that

$$
\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}=\iint_{E} \operatorname{div} \mathbf{F} d V .
$$

Example

Let $S=\left\{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}\right\},(r>0)$. Let $F=\langle x, y, z\rangle$. How much fluid flows across S in unit time?
(a) πr^{3}
(b) $4 \pi r^{3}$
(c) $\frac{4}{3} \pi r^{3}$
(d) The answer depends on $\left(x_{0}, y_{0}, z_{0}\right)$ and r.
(e) The calculation is too complicated.

