Last time: the Divergence Theorem

Assume **E** is a vector field with continuous first derivatives on an open set $D \subset \mathbb{R}^3$. Assume that $B \subset D$ is a "nice" solid. Then

Theorem (Divergence Theorem)

$$\iiint_B div \mathbf{E} \ dV = \iint_{\partial B} \mathbf{E} \cdot d\mathbf{S}$$
.

Example. Assume $D=\mathbb{R}^3\setminus\{(0,0,0)\}$ is everything except the origin. Suppose that $\text{div}\mathbf{E}=0$ on D. Let $S_r=\{x^2+y^2+z^2=r^2\}$ and let $S_r'=\{(x-3)^2+(y-1)^2+z^2=r^2\}$. Find $I_1=\iint_{S_1}\mathbf{E}\cdot d\mathbf{S}$ and $I_2=\iint_{S_1'}\mathbf{E}\cdot d\mathbf{S}$.

- (a) Not enough information to find either.
- (b) $I_1 = I_2 = 0$.
- (c) Not enough information to find I_1 ; but $I_2 = 0$.
- (d) $I_1 = 0$; not enough information to find I_2 .

Announcements

- Final exam is next Friday. Register for conflict by Monday.
- Office hours/review session next week:
 - Ordinary office hours Tuesday 11–11:50am.
 - Extra office hours Wednesday evening (probably 6–7pm, maybe 7–8pm—it's fine with me if you bring your dinner). AH 341
 - Extra office hours Thursday 12–1pm. AH 341
 - · Possibly office hours also on Friday, but I can't confirm yet.
 - Come with questions (or you can listen to other people's questions).
- Fact: today is our ante-penultimate lecture. Wednesday was our pre-ante-penultimate lecture, but I forgot to say so.

Electric field and electric flux

Given a particle of charge Q at (0,0,0), its electric field is

$$\mathbf{E}(x,y,z) = rac{Q}{4\pi\epsilon_0(x^2+y^2+z^2)^{rac{3}{2}}}\langle x,y,z
angle$$
 or equivalently $\mathbf{E}(\mathbf{r}) = rac{Q}{4\pi\epsilon_0|\mathbf{r}|^3}\mathbf{r}.$ Inverse square law

This means that the force experienced by a particle of charge q at position \mathbf{r} is $q\mathbf{E}(\mathbf{r})$.

Where is the vector field **E** defined?

- (a) all of \mathbb{R}^3
- (b) everywhere except (0,0,0)
- (c) everywhere except the z-axis, $\{x = y = 0\}$
- (d) I don't know

Practice with Gauss' Law

Suppose we have particles of charge Q_i at points P_i , with $Q_i = i$ for i = 1, 2, 3, 4, 5. Suppose that B is a solid region containing P_1 , P_3 , and P_4 , but not P_2 or P_5 . What is

$$\iint_{\partial B} \mathbf{E} \cdot d\mathbf{S}?$$

- (a) 0
- (b) $\frac{1}{\epsilon_0}$
- (c) $\frac{2}{\epsilon_0}$
- (d) $\frac{4}{\epsilon_0}$
- (e) $\frac{8}{\epsilon c}$