Last time: the Divergence Theorem

Assume \mathbf{E} is a vector field with continuous first derivatives on an open set $D \subset \mathbb{R}^{3}$. Assume that $B \subset D$ is a "nice" solid. Then

Theorem (Divergence Theorem)

$\iiint_{B} \operatorname{div} \mathbf{E} d V=\iint_{\partial B} \mathbf{E} \cdot d \mathbf{S}$.
Example. Assume $D=\mathbb{R}^{3} \backslash\{(0,0,0)\}$ is everything except the origin. Suppose that $\operatorname{div} \mathbf{E}=0$ on D. Let $S_{r}=\left\{x^{2}+y^{2}+z^{2}=r^{2}\right\}$ and let $S_{r}^{\prime}=\left\{(x-3)^{2}+(y-1)^{2}+z^{2}=r^{2}\right\}$.
Find $I_{1}=\iint_{S_{1}} \mathbf{E} \cdot d \mathbf{S}$ and $I_{2}=\iint_{S_{1}^{\prime}} \mathbf{E} \cdot d \mathbf{S}$.
(a) Not enough information to find either.
(b) $I_{1}=I_{2}=0$.
(c) Not enough information to find I_{1}; but $I_{2}=0$.
(d) $I_{1}=0$; not enough information to find I_{2}.

Solution

Let B be any solid that doesn't contain ($0,0,0$), so that $B \subset D$. (e.g. the solid inside the sphere S_{r}^{\prime}.)

By the Divergence theorem,

$$
\iint_{\partial B} \mathbf{E} \cdot d \mathbf{S}=\iiint_{B} \operatorname{div} \mathbf{E} d V=\iiint_{B} 0 d V=0 .
$$

Note that this argument doesn't work for S_{1}, because the solid inside of S_{1} contains $(0,0,0)$, so \mathbf{E} is not defined over the whole solid, and the Divergence Theorem doesn't apply.

In fact, we will see later how to calculate $\iint_{S_{1}} \mathbf{E} \cdot d \mathbf{S}$ explicitly for a certain example of \mathbf{E}, and we will see that it's not 0 .

Announcements

- Final exam is next Friday. Register for conflict by Monday.
- Office hours/review session next week:
- Ordinary office hours Tuesday 11-11:50am.
- Extra office hours Wednesday evening (probably 6-7pm, maybe 7-8pm-it's fine with me if you bring your dinner). AH 341
- Extra office hours Thursday 12-1pm. AH 341
- Possibly office hours also on Friday, but I can't confirm yet.
- Come with questions (or you can listen to other people's questions).
- Fact: today is our ante-penultimate lecture. Wednesday was our pre-ante-penultimate lecture, but I forgot to say so.

Electric field and electric flux

Given a particle of charge Q at $(0,0,0)$, its electric field is

$$
\begin{aligned}
\mathbf{E}(x, y, z) & =\frac{Q}{4 \pi \epsilon_{0}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\langle x, y, z\rangle \\
& \text { or equivalently } \\
\mathbf{E}(\mathbf{r}) & =\frac{Q}{4 \pi \epsilon_{0}|\mathbf{r}|^{3}} \mathbf{r} . \quad \text { Inverse square law }
\end{aligned}
$$

This means that the force experienced by a particle of charge q at position \mathbf{r} is $q \mathbf{E}(\mathbf{r})$.

Where is the vector field \mathbf{E} defined?
(a) all of \mathbb{R}^{3}
(b) everywhere except $(0,0,0)$
(c) everywhere except the z-axis, $\{x=y=0\}$
(d) I don't know

Practice with Gauss' Law

Suppose we have particles of charge Q_{i} at points P_{i}, with $Q_{i}=i$ for $i=1,2,3,4,5$. Suppose that B is a solid region containing P_{1}, P_{3}, and P_{4}, but not P_{2} or P_{5}. What is

$$
\iint_{\partial B} \mathbf{E} \cdot d \mathbf{S} ?
$$

(a) 0
(b) $\frac{1}{\epsilon_{0}}$
(c) $\frac{2}{\epsilon_{0}}$
(d) $\frac{4}{\epsilon_{0}}$
(e) $\frac{8}{\epsilon_{0}}$

Solution

The enclosed charge is $Q_{1}+Q_{3}+Q_{4}=1+3+4=8$.
So by Gauss' Law,

$$
\iint_{\partial B} \mathbf{E} \cdot d \mathbf{S}=\frac{8}{\epsilon_{0}}
$$

