
Tuesday, January 15 ∗ Solutions ∗ A review of some important calculus topics

1. Chain Rule:

(a) Let h(t ) = sin
(

cos(tan t )
)
. Find the derivative with respect to t .

Solution.

d

d t
(h(t )) = d

d t
(sin(cos(tan t )))

= cos(cos(tan t )) · d

d t
(cos(tan t ))

= cos(cos(tan t )) · (−sin(tan t )) · d

d t
(tan t )

= cos(cos(tan t )) · (−sin(tan t )) · sec2 t

(b) Let s(x) = 4
p

x where x(t ) = ln
(

f (t )
)

and f (t ) is a differentiable function. Find
d s

d t
.

Solution. From d s
d t = d s

d x · d x
d t , we get

d s

d t
= 1

4x3/4
· f ′(t )

f (t )
.

But we need to make sure that d s
d t is a single variable function of f , so

d s

d t
= 1

4
[
ln( f (t ))

]3/4
· f ′(t )

f (t )
.

2. Parameterized curves:

(a) Describe and sketch the curve given parametrically byx = 5sin(3t )

y = 3cos(3t )
for 0 ≤ t < 2π

3
.

What happens if we instead allow t to vary between 0 and 2π?

Solution. Note that (x

5

)2
+

( y

3

)2
= sin2(3t )+cos2(3t ) = 1.

So this parameterizes (at least part of) the ellipse
( x

5

)2 + ( y
3

)2 = 1.



By examining differing values of t in 0 ≤ t ≤ 2π
3 , we see that this parametrization travels

the ellipse in a clockwise fashion exactly once.

t = 0 : (x(0), y(0)) = (0,3)

t =π/6 : (x(π/6), y(π/6)) = (5,0)

t =π/3 : (x(π/3), y(π/3)) = (0,−3)

t =π/2 : (x(π/2), y(π/2)) = (−5,0)
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Figure 1: Ellipse.

If we let t vary between 0 and 2π, we will traverse the ellipse 3 times.

(b) Set up, but do not evaluate an integral that calculates the arc length of the curve described

in part (a).

Solution. Arc length

s =
∫ b

a

√(
d x

d t

)2

+
(

d y

d t

)2

d t

=
∫ 2π

3

0

√
(15cos(3t ))2 + (−9sin(3t ))2d t .

(c) Consider the equation x2 + y2 = 16. Graph the set of solutions of this equation in R2 and

find a parametrization that traverses the curve once counterclockwise.

Solution. If we let x = 4cos t and y = 4sin t , then x2 + y2 = (4cos t )2 + (4sin t )2 = 16. More-



over, as t increases, this parametrization traverses the circle in a counterclockwise fashion:

t = 0 : (x(0), y(0)) = (4,0)

t =π/2 : (x(π/2), y(π/2)) = (0,4)

t =π : (x(π), y(π)) = (−4,0)

t = 3π/2 : (x(3π/2), y(3π/2)) = (0,−4)

t = 2π : (x(2π), y(2π)) = (4,0)
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Figure 2: Circle.

To ensure that we travel the curve only once, we restrict t to the interval [0,2π). So the

parametrization is x = 4cos t

y = 4sin t
when 0 ≤ t ≤ 2π.

3. 1st and 2nd Derivative Tests:

(a) Use the 2nd Derivative Test to classify the critical numbers of the function f (x) = x4−8x2+
10.

Solution. First, we find the critical points of f (x).

f ′(x) = 4x3 −16x.

f ′(x) = 0 when 4x3−16x = 4x(x2−4) = 4x(x−2)(x+2) = 0. Hence f ′(x) = 0 when x = 0, x = 2

or x =−2.



Now apply the 2nd Derivative Test to the three critical points. From f "(x) = 12x2 −16, we

get:

f "(0) =−16 < 0, so y = f (x) is concave down at the point (0, f (0)). So a local max occurs at

(0,10).

f "(−2) = 32 > 0, so y = f (x) is concave up at the point (−2, f (−2)). So a local min occurs at

(−2,−6).

f "(2) = 32 > 0, so y = f (x) is concave up at the point (2, f (2)). So a local min occurs at

(2,−6).

(b) Use the 1st Derivative Test and find the extrema of h(s) = s4 +4s3 −1.

Solution. First, find the critical points of h(s).

h′(s) = 4s3 +12s2.

Then h′(s) = 0 when 4s3 +12s2 = 4s2(s +3) = 0. So h′(s) = 0 when s = 0 and s =−3.

For the 1st Derivative Test, we need to determine if h is increasing or decreasing on the

intervals (−∞,−3), (−3,0) and (0,∞).

On (−∞,−3) choose any test point (for example, choose s = −1000). The sign of h′(s) =
4s3 +12s2 < 0 on this interval. Hence h(s) is decreasing on (−∞,−3).

On (−3,0) choose any test point (for example, choose s = −1). The sign of h′(s) = 4s3 +
12s2 > 0 on this interval. Hence h(s) is increasing on (−3,0).

On (0,∞) choose any test point (for example, choose s = 1000). The sign of h′(s) = 4s3 +
12s2 > 0 on this interval. Hence h(s) is increasing on (0,∞).

Since at s = −3 the function changes from decreasing to increasing, the function must

have obtained a local min at s =−3.

At s = 0, neither a max or a min occurs in the value of h.

(c) Explain why the 2nd Derivative test is unable to classify all the critical numbers of h(s) =
s4 +4s3 −1.

Solution. When s = −3, h"(−3) = 36 > 0. A local min occurs when s = −3 by the 2nd

Derivative Test.

When s = 0, h"(0) = 0. The 2nd Derivative Test is inconclusive. The graph of y = h(s) has

no concavity at (0,h(0)). Without more information (the 1st Derivative Test), we are un-

able to identify (0,h(0)) as a local max, min or a point of inflection.

4. Consider the function f (x) = x2e−x .



(a) Find the best linear approximation to f at x = 0.

Solution. Recall that in Calc I and II, the "best linear approximation" is synonymous

with the equation of the tangent line or the 1st order Taylor polynomial. Hence, f ′(x) =
2xe−x +x2(−e−x).

Since f ′(0) = 0, the tangent line has no slope at (0, f (0)) = (0,0). The equation of the tan-

gent line is y = 0.

(b) Compute the second-order Taylor polynomial at x = 0.

Solution. By definition, the second-order Taylor polynomial at x = 0 is

T2(x) = f (0)+ f ′(0)

1!
(x −0)+ f "(0)

2!
(x −0)2.

Since f "(x) = 2e−x −4xe−x +x2e−x , we compute that f "(0) = 2. Hence

T2(x) = 0+ 0

1!
(x −0)+ 2

2!
(x −0)2 = x2.

(c) Explain how the second-order Taylor polynomial at x = 0 demonstrates that f must have

a local minimum at x = 0.

Solution. The second-order Taylor polynomial is the best quadratic approximation to the

curve y = f (x) at the point (0, f (0)). Since T2(x) = x2 clearly has a local minimum at (0,0),

and (0,0) is the location of a critical point of f , then f must also have a local minimum at

(0,0).

5. Consider the integral
∫ p

3π

0
2x cos(x2)d x.

(a) Sketch the area in the x y-plane that is implicitly defined by this integral.

Solution. The shadow area in the following picture is the area defined by the integral.
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Figure 3: 5(a).

(b) To evaluate, you will need to perform a substitution. Choose a proper u = f (x) and rewrite

the integral in terms of u. Sketch the area in the uv-plane that is implicitly defined by this

integral.

Solution. Let u = x2. Then du = 2xd x, so the integral becomes∫ p
3π

0
2x cos(x2)d x =

∫ 3π

0
cosudu.
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Figure 4: 5(b).

(c) Evaluate the integral
∫ p

3π

0
2x cos(x2)d x.

Solution. ∫ p
3π

0
2x cos(x2)d x =

∫ 3π

0
cosudu =

[
sinu

]u=3π

u=0
= sin(3π)− sin0 = 0.


