Thursday, January 17 ** Parametric curves defined using vector arithmetic.

1. Let $f(x)=x^{2}+x-2$.
(a) Graph the equation $y=f(x)$. (By hand, then check with a calculator if you want.)
(b) Find the slope and equation of the tangent line to $y=f(x)$ when $x=2$. Draw the tangent line on your picture.
(c) Draw a vector in \mathbb{R}^{2} that describes the direction of the line. Find a numeric representation of your vector.
2. Consider the curve given parametrically by

$$
\left\{\begin{array}{l}
x(t)=t \\
y(t)=t^{2}+t-2
\end{array} \quad \text { for } 0 \leq t<4\right.
$$

(a) Sketch the curve. How does this graph differ from your graph in Problem 1(a)?
(b) Consider the vectors formed by the pair $(x(t), y(t))$. Anchoring the vectors at the origin, sketch on your graph the vectors at time $t=0,1,2,3$.
(c) Now consider the vectors formed by $\left(x^{\prime}(t), y^{\prime}(t)\right)$. Evaluate $\left(x^{\prime}(t), y^{\prime}(t)\right)$ at time $t=2$, what does the vector represent? Hint: Graph it on the curve at the point $(x(2), y(2))$.
(d) Imagine that the curve is the path of a moving particle. What is the speed of the particle when $t=2$?
3. (a) Sketch the vector emanating from the origin ending at the point $(-5,2)$ in \mathbb{R}^{2}.
(b) On the same graph and using the "head-to-tail" geometric addition method, draw the vector $(-5,2)+(3,-1)$.
(c) Do the same for $(-5,2)+2(3,-1)$.
(d) Do the same for $(-5,2)+(-1)(3,-1)$.
(e) If we allow the scalar mulitplying the vector $(3,-1)$ to vary, what geometric object is described by the parametric equation $(-5,2)+t(3,-1)$ for all t ?
4. Consider the set of points in \mathbb{R}^{3} defined by the parametric equation

$$
\mathbf{l}(t)=(-5+2 t, 2+3 t, 1-t) \quad \text { for all } t .
$$

(a) Using the properties of vector arithmetic, factor $\mathbf{l}(t)$ into the form $\mathbf{p}+t \mathbf{v}$ where \mathbf{p} and \mathbf{v} are vectors in \mathbb{R}^{3}.
(b) Using the factored form (and your technique from Problem 3) sketch this object in \mathbb{R}^{3}. Geometrically, what does this parametric equation describe?
(c) Why is the vector \mathbf{v} in your factored form referred to as the direction vector?
5. Let $\mathbf{a}=(-\sqrt{3}, 0,-1,0)$ and $\mathbf{b}=(1,1,0,1)$ be vectors in \mathbb{R}^{4}.
(a) Find the distance between the points $(-\sqrt{3}, 0,-1,0)$ and $(1,1,0,1)$.
(b) Find the angle between \mathbf{a} and \mathbf{b}.

