Thursday, January 17 * Solutions * Parametric Curves Defined Using Vector Arithmetic

1. (a) Plot of $f(x)=x^{2}+x-2$

(b) $f^{\prime}(x)=2 x+1$, so the equation for the tangent line to $f(x)$ at $x=2$ is $T(x)=f(2)+f^{\prime}(2)(x-$ 2) $=4+5(x-2)=5 x-6$.
(c) A vector in the direction of the tangent line has a slope of 5 , so the vector $\langle 1,5\rangle$ is a good choice. It is shown on the graph above based at $(2,4)$.
2. (a) Plot of $\left\{\begin{array}{l}x=t \\ y=t^{2}+t-2\end{array}\right.$ for $0 \leq t<4$. This is different from the graph above because the domain is restricted.

(b) The vectors based at $(0,0)$ and ending at $(x(t), y(t))$ for $t=0,1,2,3$ are shown on the graph above.
(c) $\left\langle x^{\prime}(2), y^{\prime}(2)\right\rangle=\langle 1,5\rangle$. This represents velocity - this vector is shown on the curve in the graph below 1.a.
(d) The speed of the particle is the magnitude of the velocity, or $\sqrt{1^{2}+5^{2}}=\sqrt{26}$.
3. - (a)-(d) shown below. The red arrows (from left to right) are the vectors $\langle-8,3\rangle,\langle-5,2\rangle,\langle-2,-1\rangle$, and $\langle 1,0\rangle$. The black arrows show how these are obtained by adding the multiples $-\mathbf{v}, 0, \mathbf{v}$, and $2 \mathbf{v}$ of the vector $\mathbf{v}=\langle 3,-1\rangle$ to the vector $\langle-5,2\rangle$.

- (e) If we allow the scalar t to vary in the parametric equation $\langle-5,2\rangle+t\langle 3,-1\rangle$ we get a line through the point $(-5,2)$ in the direction of the vector $\langle 3,-1\rangle$.

4. (a) $\mathbf{l}(t)=\langle-5+2 t, 2+3 t, 1-t\rangle=\langle-5,2,1\rangle+t\langle 2,3,-1\rangle$, so $\mathbf{p}=\langle-5,2,1\rangle$ and $\mathbf{v}=\langle 2,3,-1\rangle$.
(b) Plot of the line from part (a)

(c) \mathbf{v} is called the direction vector because it points in the direction of the line.
5. Let $\mathbf{a}=\langle-\sqrt{3}, 0,-1,0\rangle$ and $\mathbf{b}=\langle 1,1,0,1\rangle$ be vectors in \mathbb{R}^{4}.
(a) The distance between $(-\sqrt{3}, 0,-1,0)$ and $(1,1,0,1)$ is $\sqrt{(1+\sqrt{3})^{2}+1^{2}+1^{2}+1^{2}}=\sqrt{7+2 \sqrt{3}}$.
(b) The angle between \mathbf{a} and \mathbf{b} is found by:

$$
\arccos \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)=\arccos \left(\frac{-\sqrt{3}}{2 \sqrt{3}}\right)=\arccos (-1 / 2)=2 \pi / 3
$$

