Tuesday, January 22 ** Projections, distances, and planes.

1. Let $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{2} \mathbf{i}-\mathbf{1}$.
(a) Calculate $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ and draw a picture of it together with \mathbf{a} and \mathbf{b}.
(b) The orthogonal complement of the vector \mathbf{a} with respect to \mathbf{b} is defined by

$$
\operatorname{orth}_{\mathbf{b}} \mathbf{a}=\mathbf{a}-\operatorname{proj}_{\mathbf{b}} \mathbf{a} .
$$

Calculate orth $\mathbf{b}_{\mathbf{b}} \mathbf{a}$ and draw two copies of it in your picture from part (a), one based at $\mathbf{0}$ and the other at proj $_{\mathbf{b}} \mathbf{a}$.
(c) Check that orth $\mathbf{b}_{\mathbf{b}} \mathbf{a}$ calculated in (b) is orthogonal to proj $_{\mathbf{b}} \mathbf{a}$ calculated in (a).
(d) Find the distance of the point $(1,1)$ from the line $(x, y)=t(2,-1)$. Hint: relate this to your picture.
2. Let \mathbf{a} and \mathbf{b} be vectors in \mathbb{R}^{n}. Use the definitions of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ and orth ${ }_{\mathbf{b}} \mathbf{a}$ to show that orth $\mathbf{b}_{\mathbf{b}} \mathbf{a}$ is always orthogonal to $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$.
3. Find the distance between the point $P(3,4,-1)$ and the line $\mathbf{l}(t)=(2,3,-2)+t(1,-1,1)$. Hint: Consider a vector starting at some point on the line and ending at P, and connect this to what you learned in Problem 1.
4. Consider the equation of the plane $x+2 y+3 z=12$.
(a) Find a normal vector \mathbf{n} to the plane. (Just look at the equation!)
(b) Find where the x, y, and z-axes intersect the plane. Using this information, sketch the portion of the plane in the first octant where $x \geq 0, y \geq 0, z \geq 0$.
(c) Using the points in part (b), find two non-parallel vectors that are parallel to the plane.
(d) Using the dot product to check that the vectors you found in (c) are really orthogonal to \mathbf{n}.
(e) Pick another normal vector \mathbf{n}^{\prime} to the plane and one of the points from (b). Use these to find an alternative equation for the plane. Compare this new equation to $x+2 y+3 z=12$. How are these two equations related? Is it clear that they describe the same set of points (x, y, z) in \mathbb{R}^{3} ?
5. The Triangle Inequality. Let \mathbf{a} and \mathbf{b} be any vectors in \mathbb{R}^{n}. The triangle inequality states that $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$.
(a) Give a geometric interpretation of the triangle inequality. (E.g. draw a picture in \mathbb{R}^{2} or \mathbb{R}^{3} that represents this inequality.)
(b) Use what we know about the dot product to explain why $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}|$. This is called the Cauchy-Schwarz inequality.
(c) Use part (b) to justify the triangle inequality. Hint: Start with the fact that $|\mathbf{a}+\mathbf{b}|^{2}=(\mathbf{a}+\mathbf{b})$. $(\mathbf{a}+\mathbf{b})$ and then use properties of the dot product and the Cauchy-Schwarz inequality to manipulate the right-hand side into looking like $|\mathbf{a}|^{2}+|\mathbf{b}|^{2}$.

