Tuesday, January 29 * Solutions * Visualizing quadric surfaces

- 1. Elliptic paraboloid: $z = Ax^2 + By^2$ (*A*, *B* have same sign)
 - (a) The parabolas differ only by translation in the *z*-direction. In particular, they all curve in exactly the same way. To check this, note that setting x = c in $z = x^2 + y^2$ gives $z = y^2 + c^2$.
 - (b) If A = 0 or B = 0 our surface becomes a parabola extended out parallel to a coordinate axis. If A = B = 0 our surface becomes the plane z = 0. Neither of those surfaces are elliptic.
 - (c) If *A* and *B* were both negative the surface would be a downward opening elliptic paraboloid contained entirely beneath the plane z = 0.
- 2. Hyperbolic paraboloid: $z = Ax^2 + By^2$ (*A*, *B* differ in sign)
 - (a) The horizontal cross section given by z = 0 is a set of two crossing lines, which is not a hyperbola.
 - (b) $y^2 x^2 = -(x^2 y^2)$ so the two surfaces would be mirrors of each other across the plane z = 0.
- 3. Ellipsoid: $\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$
 - (a) To be a sphere we'd need $A^2 = B^2 = C^2$
 - (b) The sliders cannot go to 0 since *A*, *B* and *C* are divisors in the equation.
- 4. Double cone: $z^2 = Ax^2 + By^2$
 - (a) Setting z equal to a constant gives the equation for an ellipse, while setting x or y equal to a constant gives the equation for a hyperbola.
 - (b) If A = 0 or B = 0 the equation yields a set of two intersecting planes.
 - (c) The cross sections given by x = 0 or y = 0 are sets of two intersecting lines.
- 5. Hyperboloid of one sheet: $\frac{x^2}{A^2} + \frac{y^2}{B^2} \frac{z^2}{C^2} = 1$
 - (a) The sliders don't go to 0 because *A*, *B* and *C* are divisors in the equation. When *A*, *B*, and *C* are very small, the hyperboloid is close to the double cone.
 - (b) When $x = \pm A$, the equation reduces to $C^2 y^2 = B^2 z^2$, which describes two intersecting lines.
 - (c) There must always be a hole through the hyperboloid, since when z = 0 our equation is $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$, which describes a nontrivial ellipse (if (x, y) is in this ellipse, then so is (-x, -y), and (0, 0) does not satisfy this equation).
- 6. Hyperboloid of two sheets: $-\frac{x^2}{A^2} \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$
 - (a) The larger *A* and *B* get the smaller the terms $-\frac{x^2}{A^2}$ and $-\frac{y^2}{B^2}$ get, making the equation closer to one describing two planes.
 - (b) There must always be a gap between the two sheets because the equation cannot be satisfied when z = 0.
 - (c) These hyperboloids approach the double cone given by $z^2 = x^2 + y^2$. The algebraic way to see this is to rewrite the equation for the hyperboloid with A = B = C as $z^2 = x^2 + y^2 + A^2$, and then argue that the final term becomes negligible as $A \rightarrow 0$.