Thursday, January 31 ** Functions of several variables; Limits.

- 1. For each of the following functions $f: \mathbb{R}^2 \to \mathbb{R}$, draw a sketch of the graph together with pictures of some level sets.
 - (a) f(x, y) = xy
 - (b) $f(\mathbf{x}) = |\mathbf{x}|$. Please note here that \mathbf{x} is a vector. In coordinates, this function is $f(x, y) = \sqrt{x^2 + y^2}$.

For (a), the result is one of the many quadric surfaces. What is the name for this type? Is the graph in (b) also a quadric surface?

2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = \frac{2x^3y}{x^6 + y^2}$$
 for $(x, y) \neq \mathbf{0}$

In this problem, you'll consider $\lim_{(x,y)\to 0} f(x,y)$.

- (a) Look at the values of f on the x- and y-axes. What do these values show the limit $\lim_{(x,y)\to\mathbf{0}} f(x,y)$ must be **if it exists**?
- (b) Show that along each line in \mathbb{R}^2 through the origin, the limit of f exists and is 0.
- (c) Despite this, show that the limit $\lim_{(x,y)\to 0} f(x,y)$ does not exist by finding a curve over which f takes on the constant value 1.
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = \frac{xy^2}{\sqrt{x^2 + y^2}}$$
 for $(x, y) \neq \mathbf{0}$

In this problem, you'll show $\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{h}) = 0$.

- (a) For $\epsilon = 1/2$, find some $\delta > 0$ so that when $0 < |\mathbf{h}| < \delta$ we have $|f(\mathbf{h})| < \epsilon$. Hint: As with the example in class, the key is to relate |x| and |y| with $|\mathbf{h}|$.
- (b) Repeat with $\epsilon = 1/10$.
- (c) Now show that $\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{h}) = 0$. That is, given an arbitrary $\epsilon > 0$, find a $\delta > 0$ so that that when $0 < |\mathbf{h}| < \delta$ we have $|f(\mathbf{h})| < \epsilon$.
- (d) Explain why the limit laws that you learned in class on Wednesday aren't enough to compute this particular limit.