Thursday, January 31 * Solutions * Functions of several variables; Limits.

- 1. For each of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$, draw a sketch of the graph together with pictures of some level sets.
 - (a) f(x, y) = xy
 - (b) $f(\mathbf{x}) = |\mathbf{x}|$. Please note here that \mathbf{x} is a vector. In coordinates, this function is $f(x, y) = \sqrt{x^2 + y^2}$.

For (a), the result is one of the many quadric surfaces. What is the name for this type? Is the graph in (b) also a quadric surface?

Solution.

(a) The graph of the function f(x, y) = xy is

Figure 1: Graph of f(x, y) = xy.

The graph of the level sets f(x, y) = -2, -1, 0, 1, 2 is

Figure 2: Graph of Level Sets of f(x, y) = xy.

The graph of f(x, y) = xy is a hyperbolic paraboloid since the horizontal traces are hyperbolas and the vertical traces are parabolas.

(b) The graph of the function $f(\mathbf{x}) = |\mathbf{x}|$ is

Figure 3: Graph of $f(\mathbf{x}) = |\mathbf{x}|$.

The graph of the level sets f(x, y) = 0, 1, 2, 3 is

Figure 4: Graph of Level Sets of $f(\mathbf{x}) = |\mathbf{x}|$.

The graph of $f(\mathbf{x}) = |\mathbf{x}|$ is not a quadric surface because it cannot be written as $Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$. It is the top half of a cone, which is a quadric surface.

2. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = \frac{2x^3y}{x^6 + y^2}$$
 for $(x, y) \neq 0$

In this problem, you'll consider $\lim_{(x,y)\to 0} f(x, y)$.

(a) Look at the values of *f* on the *x*- and *y*-axes. What do these values show the limit $\lim_{(x,y)\to 0} f(x, y)$ must be **if it exists**?

Solution. Along y = 0, $\lim_{(x,y)\to 0} f(x,y) = \lim_{x\to 0} f(x,0) = \lim_{x\to 0} \frac{0}{x^6} = 0$. Along x = 0, $\lim_{(x,y)\to 0} f(x,y) = \lim_{y\to 0} f(0,y) = \lim_{y\to 0} \frac{0}{y^2} = 0$. Thus, should it exist, we must have $\lim_{(x,y)\to 0} f(x,y) = 0$.

(b) Show that along each line in \mathbb{R}^2 through the origin, the limit of *f* exists and is 0.

Solution. Any line through the origin besides x = 0 or y = 0 can be written as y = mx, $m \neq 0$.

Along
$$y = mx$$
, $\lim_{(x,y)\to 0} f(x,y) = \lim_{x\to 0} f(x,mx) = \lim_{x\to 0} \frac{2mx^4}{x^6 + m^2x^2} = \lim_{x\to 0} \frac{2mx^2}{x^4 + m^2} = 0.$

(c) Despite this, show that the limit $\lim_{(x,y)\to 0} f(x, y)$ does not exist by finding a curve over which *f* takes on the constant value 1.

Solution. Along
$$y = x^3$$
, $\lim_{(x,y)\to 0} f(x,y) = \lim_{x\to 0} f(x,x^3) = \lim_{x\to 0} \frac{2x^6}{x^6 + x^6} = 1.$

3. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = \frac{xy^2}{\sqrt{x^2 + y^2}} \quad \text{for } (x, y) \neq \mathbf{0}$$

In this problem, you'll show $\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{h}) = 0$.

(a) For $\epsilon = 1/2$, find some $\delta > 0$ so that when $0 < |\mathbf{h}| < \delta$ we have $|f(\mathbf{h})| < \epsilon$. Hint: As with the example in class, the key is to relate |x| and |y| with $|\mathbf{h}|$.

Solution. Note that $|x|, |y| \le |\mathbf{h}|$. For $\epsilon = 1/2$, let $\delta = 1/\sqrt{2}$. Then $0 < |\mathbf{h}| < \delta$ implies

$$|f(\mathbf{h})| \le \frac{|\mathbf{h}|^3}{|\mathbf{h}|} = |\mathbf{h}|^2 < \delta^2 = \frac{1}{2}.$$

(b) Repeat with $\epsilon = 1/10$.

Solution. For $\epsilon = 1/10$, let $\delta = 1/\sqrt{10}$. Then $0 < |\mathbf{h}| < \delta$ implies

$$|f(\mathbf{h})| \le |\mathbf{h}|^2 < \delta^2 = \frac{1}{10}.$$

(c) Now show that $\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{h}) = 0$. That is, given an arbitrary $\epsilon > 0$, find a $\delta > 0$ so that that when $0 < |\mathbf{h}| < \delta$ we have $|f(\mathbf{h})| < \epsilon$.

Solution. Given $\epsilon > 0$, let $\delta = \sqrt{\epsilon}$. Then $0 < |\mathbf{h}| < \delta$ implies

$$|f(\mathbf{h})| \le |\mathbf{h}|^2 < \delta^2 = \epsilon.$$

(d) Explain why the limit laws that you learned in class on Wednesday aren't enough to compute this particular limit.

Solution. f(x, y) cannot be written as f(x, y) = g(x, y)h(x, y) so that $\lim_{|\mathbf{x}|\to 0} g(\mathbf{x})$ and $\lim_{|\mathbf{x}|\to 0} h(\mathbf{x})$ both exist and are easier to compute than $\lim_{|\mathbf{x}|\to 0} f(\mathbf{x})$.