Thursday, January 31 * Solutions * Functions of several variables; Limits.

1. For each of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, draw a sketch of the graph together with pictures of some level sets.
(a) $f(x, y)=x y$
(b) $f(\mathbf{x})=|\mathbf{x}|$. Please note here that \mathbf{x} is a vector. In coordinates, this function is $f(x, y)=$ $\sqrt{x^{2}+y^{2}}$.

For (a), the result is one of the many quadric surfaces. What is the name for this type? Is the graph in (b) also a quadric surface?

Solution.

(a) The graph of the function $f(x, y)=x y$ is

Figure 1: Graph of $f(x, y)=x y$.

The graph of the level sets $f(x, y)=-2,-1,0,1,2$ is

Figure 2: Graph of Level Sets of $f(x, y)=x y$.

The graph of $f(x, y)=x y$ is a hyperbolic paraboloid since the horizontal traces are hyperbolas and the vertical traces are parabolas.
(b) The graph of the function $f(\mathbf{x})=|\mathbf{x}|$ is

Figure 3: Graph of $f(\mathbf{x})=|\mathbf{x}|$.

The graph of the level sets $f(x, y)=0,1,2,3$ is

Figure 4: Graph of Level Sets of $f(\mathbf{x})=|\mathbf{x}|$.

The graph of $f(\mathbf{x})=|\mathbf{x}|$ is not a quadric surface because it cannot be written as $A x^{2}+B y^{2}+$ $C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0$. It is the top half of a cone, which is a quadric surface.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\frac{2 x^{3} y}{x^{6}+y^{2}} \quad \text { for }(x, y) \neq \mathbf{0}
$$

In this problem, you'll consider $\lim _{(x, y) \rightarrow \mathbf{0}} f(x, y)$.
(a) Look at the values of f on the x - and y-axes. What do these values show the $\operatorname{limit}^{\lim }(x, y) \rightarrow \mathbf{0} f(x, y)$ must be if it exists?

Solution. Along $y=0, \lim _{(x, y) \rightarrow \mathbf{0}} f(x, y)=\lim _{x \rightarrow 0} f(x, 0)=\lim _{x \rightarrow 0} \frac{0}{x^{6}}=0$.
Along $x=0, \lim _{(x, y) \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} f(0, y)=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$.
Thus, should it exist, we must have $\lim _{(x, y) \rightarrow 0} f(x, y)=0$.
(b) Show that along each line in \mathbb{R}^{2} through the origin, the limit of f exists and is 0 .

Solution. Any line through the origin besides $x=0$ or $y=0$ can be written as $y=m x, m \neq$ 0 .
Along $y=m x, \lim _{(x, y) \rightarrow \mathbf{0}} f(x, y)=\lim _{x \rightarrow 0} f(x, m x)=\lim _{x \rightarrow 0} \frac{2 m x^{4}}{x^{6}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{2 m x^{2}}{x^{4}+m^{2}}=0$.
(c) Despite this, show that the limit $\lim _{(x, y) \rightarrow 0} f(x, y)$ does not exist by finding a curve over which f takes on the constant value 1 .

Solution. Along $y=x^{3}, \lim _{(x, y) \rightarrow \mathbf{0}} f(x, y)=\lim _{x \rightarrow 0} f\left(x, x^{3}\right)=\lim _{x \rightarrow 0} \frac{2 x^{6}}{x^{6}+x^{6}}=1$.
3. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\frac{x y^{2}}{\sqrt{x^{2}+y^{2}}} \quad \text { for }(x, y) \neq \mathbf{0}
$$

In this problem, you'll show $\lim _{\mathbf{h} \rightarrow \mathbf{0}} f(\mathbf{h})=0$.
(a) For $\epsilon=1 / 2$, find some $\delta>0$ so that when $0<|\mathbf{h}|<\delta$ we have $|f(\mathbf{h})|<\epsilon$. Hint: As with the example in class, the key is to relate $|x|$ and $|y|$ with $|\mathbf{h}|$.

Solution. Note that $|x|,|y| \leq|\mathbf{h}|$. For $\epsilon=1 / 2$, let $\delta=1 / \sqrt{2}$. Then $0<|\mathbf{h}|<\delta$ implies

$$
|f(\mathbf{h})| \leq \frac{|\mathbf{h}|^{3}}{|\mathbf{h}|}=|\mathbf{h}|^{2}<\delta^{2}=\frac{1}{2} .
$$

(b) Repeat with $\epsilon=1 / 10$.

Solution. For $\epsilon=1 / 10$, let $\delta=1 / \sqrt{10}$. Then $0<|\mathbf{h}|<\delta$ implies

$$
|f(\mathbf{h})| \leq|\mathbf{h}|^{2}<\delta^{2}=\frac{1}{10} .
$$

(c) Now show that $\lim _{\mathbf{h} \rightarrow \mathbf{0}} f(\mathbf{h})=0$. That is, given an arbitrary $\epsilon>0$, find a $\delta>0$ so that that when $0<|\mathbf{h}|<\delta$ we have $|f(\mathbf{h})|<\epsilon$.

Solution. Given $\epsilon>0$, let $\delta=\sqrt{\epsilon}$. Then $0<|\mathbf{h}|<\delta$ implies

$$
|f(\mathbf{h})| \leq|\mathbf{h}|^{2}<\delta^{2}=\epsilon
$$

(d) Explain why the limit laws that you learned in class on Wednesday aren't enough to compute this particular limit.

Solution. $f(x, y)$ cannot be written as $f(x, y)=g(x, y) h(x, y)$ so that $\lim _{|\mathbf{x}| \rightarrow 0} g(\mathbf{x})$ and $\lim _{|\mathbf{x}| \rightarrow 0} h(\mathbf{x})$ both exist and are easier to compute than $\lim _{|\mathbf{x}| \rightarrow 0} f(\mathbf{x})$.

