Tuesday, February 19 * **Solutions** * *Taylor series, the* 2^{nd} *derivative test, and changing coordinates.*

- 1. Consider $f(x, y) = 2\cos x y^2 + e^{xy}$.
 - (a) Show that (0,0) is a critical point for f.

SOLUTION:

$$\frac{\partial f}{\partial x}|_{(0,0)} = (-2\sin x + ye^{xy})|_{(0,0)} = 0 \text{ and } \frac{\partial f}{\partial y}|_{(0,0)} = (-2y + xe^{xy})|_{(0,0)} = 0$$

(b) Calculate each of f_{xx} , f_{xy} , f_{yy} at (0,0) and use this to write out the 2nd-order Taylor approximation for f at (0,0).

SOLUTION:

The second order Taylor approximation of a function f(x, y) at (0, 0) is given by $T_2(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + (f_{xx}(0, 0)/2)x^2 + (f_{yy}(0, 0)/2)y^2 + f_{xy}(0, 0)xy$. For this problem we have $f_{xx} = -2\cos x + y^2 e^{xy}$, $f_{yy} = -2 + x^2 e^{xy}$, and $f_{xy} = e^{xy} + xye^{xy}$. So $f_{xx}(0, 0) = -2 = f_{yy}(0, 0)$ and $f_{xy}(0, 0) = 1$. Also f(0, 0) = 3. So the second order Taylor approximation for f at (0, 0) is $g(x, y) = 3 - x^2 - y^2 + xy$.

2. Let g(x, y) be the approximation you obtained for f(x, y) near (0,0) in 1(b). It's not clear from the formula whether g, and hence f, has a min, max, or a saddle at (0,0). Test along several lines until you are convinced you've determined which type it is. In the next problem, you'll confirm your answer in two ways.

SOLUTION:

Let's test a general line y = mx which goes through (0,0) as $x \to 0$. Then $g(x,mx) = 3 - x^2 - m^2x^2 + mx^2 = 3 - (1 - m + m^2)x^2$. The polynomial $1 - m + m^2$ is always positive (it opens upward and has its global minimum at m = 1/2 where $1 - m + m^2 > 0$). So g(x, mx) is always a downward opening parabola. This suggests that (0,0) is a relative maximum.

- 3. Consider alternate coordinates (u, v) on \mathbb{R}^2 given by (x, y) = (u v, u + v).
 - (a) Sketch the *u* and *v*-axes relative to the usual *x* and *y*-axes, and draw the points whose (*u*, *v*)-coordinates are: (−1,2), (1,1), (1,−1).

SOLUTION:

If we express *u* and *v* in terms of *x* and *y* we get u = 1/2(x + y) and v = 1/2(y - x). So the *u*-axis is given in *x* and *y* coordinates by all multiples of the vector (1, 1) and the *v*-axis is given by all multiples of the vector (-1, 1). The two axes and the points are shown below.

(b) Express g as a function of u and v, and expand and simplify the resulting expression.SOLUTION:

 $\begin{aligned} 3 - x^2 - y^2 + xy &= 3 - (u - v)^2 - (u + v)^2 + (u - v)(u + v) \\ &= 3 - (u^2 - 2uv + v^2) - (u^2 + 2uv + v^2) \\ &= v^2 + u^2 - v^2 \\ &= 3 - u^2 - 3v^2. \end{aligned}$

(c) Explain why your answer in 3(b) confirms your answer in 2.

SOLUTION:

This is an elliptic paraboloid (in uv coordinates) opening downward with maximum at (0,0,3), so it confirms that (0,0) is a local maximum ((0,0) goes to (0,0) under the transformation, so this reasoning makes sense).

(d) Sketch a few level sets for g. What do the level sets of f look like near (0,0)?

SOLUTION:The level sets are sketched for g = 2.7, 2.8, 2.9 on the left and for f = 2.7, 2.8, 2.9 on the right. The level sets for g are ellipses that approximate the level sets of f close to (0,0). The ellipses shrink as they get closer to g(x, y) = 3, which consists of the single solution (x, y) = (0,0).

(e) It turns out that there is always a similar change of coordinates so that the Taylor series of a function *f* which has a critical point at (0,0) looks like $f(u, v) \approx f(0,0) + au^2 + bv^2$. In fact this is why the 2nd derivative test works.

Double check your answer in 2 by applying the 2^{nd} -derivative test directly to f. **SOLUTION:**

The Hessian $f_{xx}f_{yy} - (f_{xy})^2$ is $(-2)(-2) - 1^2 = 3 > 0$ at (0,0) and $f_{xx}(0,0) = -2 < 0$. So *f* has a relative maximum at (0,0) as suspected.

- 4. Consider the function $f(x, y) = 3xe^{y} x^{3} e^{3y}$.
 - (a) Check that f has only one critical point, which is a local maximum.

SOLUTION:

 $f_x = 3e^y - 3x^2$ and $f_y = 3xe^y - 3e^{3y}$. $f_y = 0$ only if $x = e^{2y}$ and $f_x = 0$ only if $e^y = x^2$. Solving these simultaneously we see that x must satisfy $(x^2)^2 = (e^y)^2 = x$, so x = 0, -1, or 1. But $x = e^{2y} > 0$ so the only critical point is x = 1, y = 0. Calculating, we see that $f_{xx}(1,0) = f_{yy}(1,0) = -6$ and $f_{xy}(1,0) = 3$. So the Hessian $f_{xx}f_{yy} - (f_{xy})^2 = 36 - 9 = 27 > 0$ at (1,0). Since $f_{xx}(1,0) < 0$, the second derivative test tells us that f(1,0) = 1 is a local maximum.

(b) Does *f* have an absolute maxima? Why or why not?

SOLUTION:

f does not have an absolute maximum. For instance if we take the trace curve y = 0 we get $f(x, 0) = 3x - x^3 - 1$, which is unbounded as $x \to \infty$. Absolute maxima and minima are only guaranteed over a closed and bounded set in the domain. The plane \mathbb{R}^2 is closed but not bounded, so there is no guarantee that a continuous function will achieve an absolute maximum or minimum over \mathbb{R}^2 .