Tuesday, February $19 *$ Solutions $*$ Taylor series, the $2^{\text {nd }}$ derivative test, and changing coordinates.

1. Consider $f(x, y)=2 \cos x-y^{2}+e^{x y}$.
(a) Show that $(0,0)$ is a critical point for f.

SOLUTION:

$$
\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=\left.\left(-2 \sin x+y e^{x y}\right)\right|_{(0,0)}=0 \text { and }\left.\frac{\partial f}{\partial y}\right|_{(0,0)}=\left.\left(-2 y+x e^{x y}\right)\right|_{(0,0)}=0
$$

(b) Calculate each of $f_{x x}, f_{x y}, f_{y y}$ at $(0,0)$ and use this to write out the $2^{\text {nd }}$-order Taylor approximation for f at $(0,0)$.

SOLUTION:

The second order Taylor approximation of a function $f(x, y)$ at $(0,0)$ is given by $T_{2}(x, y)=$ $f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\left(f_{x x}(0,0) / 2\right) x^{2}+\left(f_{y y}(0,0) / 2\right) y^{2}+f_{x y}(0,0) x y$. For this problem we have $f_{x x}=-2 \cos x+y^{2} e^{x y}, f_{y y}=-2+x^{2} e^{x y}$, and $f_{x y}=e^{x y}+x y e^{x y}$. So $f_{x x}(0,0)=-2=$ $f_{y y}(0,0)$ and $f_{x y}(0,0)=1$. Also $f(0,0)=3$. So the second order Taylor approximation for f at $(0,0)$ is $g(x, y)=3-x^{2}-y^{2}+x y$.
2. Let $g(x, y)$ be the approximation you obtained for $f(x, y)$ near $(0,0)$ in 1 (b). It's not clear from the formula whether g, and hence f, has a min, max, or a saddle at $(0,0)$. Test along several lines until you are convinced you've determined which type it is. In the next problem, you'll confirm your answer in two ways.

SOLUTION:

Let's test a general line $y=m x$ which goes through $(0,0)$ as $x \rightarrow 0$. Then $g(x, m x)=3-x^{2}-$ $m^{2} x^{2}+m x^{2}=3-\left(1-m+m^{2}\right) x^{2}$. The polynomial $1-m+m^{2}$ is always positive (it opens upward and has its global minimum at $m=1 / 2$ where $1-m+m^{2}>0$). So $g(x, m x)$ is always a downward opening parabola. This suggests that $(0,0)$ is a relative maximum.
3. Consider alternate coordinates (u, v) on \mathbb{R}^{2} given by $(x, y)=(u-v, u+v)$.
(a) Sketch the u - and v-axes relative to the usual x - and y-axes, and draw the points whose (u, v)-coordinates are: $(-1,2),(1,1),(1,-1)$.

SOLUTION:

If we express u and v in terms of x and y we get $u=1 / 2(x+y)$ and $v=1 / 2(y-x)$. So the u-axis is given in x and y coordinates by all multiples of the vector $(1,1)$ and the v-axis is given by all multiples of the vector $(-1,1)$. The two axes and the points are shown below.

(b) Express g as a function of u and v, and expand and simplify the resulting expression.

SOLUTION:
$3-x^{2}-y^{2}+x y=3-(u-v)^{2}-(u+v)^{2}+(u-v)(u+v)=3-\left(u^{2}-2 u v+v^{2}\right)-\left(u^{2}+2 u v+\right.$ $\left.v^{2}\right)+u^{2}-v^{2}=3-u^{2}-3 v^{2}$.
(c) Explain why your answer in 3(b) confirms your answer in 2.

SOLUTION:

This is an elliptic paraboloid (in $u v$ coordinates) opening downward with maximum at $(0,0,3)$, so it confirms that $(0,0)$ is a local maximum $((0,0)$ goes to $(0,0)$ under the transformation, so this reasoning makes sense).
(d) Sketch a few level sets for g. What do the level sets of f look like near $(0,0)$?

SOLUTION:The level sets are sketched for $g=2.7,2.8,2.9$ on the left and for $f=2.7,2.8,2.9$ on the right. The level sets for g are ellipses that approximate the level sets of f close to $(0,0)$. The ellipses shrink as they get closer to $g(x, y)=3$, which consists of the single solution $(x, y)=(0,0)$.

(e) It turns out that there is always a similar change of coordinates so that the Taylor series of a function f which has a critical point at $(0,0)$ looks like $f(u, v) \approx f(0,0)+a u^{2}+b v^{2}$. In fact this is why the $2^{\text {nd }}$ derivative test works.
Double check your answer in 2 by applying the $2^{\text {nd }}$-derivative test directly to f.
SOLUTION:

The Hessian $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$ is $(-2)(-2)-1^{2}=3>0$ at $(0,0)$ and $f_{x x}(0,0)=-2<0$. So f has a relative maximum at $(0,0)$ as suspected.
4. Consider the function $f(x, y)=3 x e^{y}-x^{3}-e^{3 y}$.
(a) Check that f has only one critical point, which is a local maximum.

SOLUTION:

$f_{x}=3 e^{y}-3 x^{2}$ and $f_{y}=3 x e^{y}-3 e^{3 y} . f_{y}=0$ only if $x=e^{2 y}$ and $f_{x}=0$ only if $e^{y}=x^{2}$. Solving these simultaneously we see that x must satisfy $\left(x^{2}\right)^{2}=\left(e^{y}\right)^{2}=x$, so $x=0,-1$, or 1. But $x=e^{2 y}>0$ so the only critical point is $x=1, y=0$. Calculating, we see that $f_{x x}(1,0)=f_{y y}(1,0)=-6$ and $f_{x y}(1,0)=3$. So the Hessian $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=36-9=27>0$ at $(1,0)$. Since $f_{x x}(1,0)<0$, the second derivative test tells us that $f(1,0)=1$ is a local maximum.
(b) Does f have an absolute maxima? Why or why not?

SOLUTION:

f does not have an absolute maximum. For instance if we take the trace curve $y=0$ we get $f(x, 0)=3 x-x^{3}-1$, which is unbounded as $x \rightarrow \infty$. Absolute maxima and minima are only guaranteed over a closed and bounded set in the domain. The plane \mathbb{R}^{2} is closed but not bounded, so there is no guarantee that a continuous function will achieve an absolute maximum or minimum over \mathbb{R}^{2}.

