Thursday, February 21 * Solutions * Constrained min/max via Lagrange multipliers.

1. Let C be the curve in \mathbb{R}^{2} given by $x^{3}+y^{3}=16$.
(a) Sketch the curve C.

SOLUTION:

(b) Is C bounded?

SOLUTION:

No. Given arbitrarily large y values we can find an x value which satisfies the equation. To see this notice that $y=\sqrt[3]{16-x^{3}}$, so we can input arbitrarily large (or small) x values and get a y value for that input.
(c) Is C closed?

SOLUTION:

Yes, C is closed in \mathbb{R}^{2}.
2. Consider the function $f(x, y)=e^{x y}$ on C.
(a) Is f continuous? What does the Extreme Value Theorem tell you about the existance of global min and max of f on C ?

SOLUTION:

Yes, f is continuous. Since C is not bounded, the Extreme Value Theorem does not tell you anything about the existence of a global min and max of f on C.
(b) Use Lagrange multipliers to determine both the min and max values of f on C.

SOLUTION:
Let $g(x, y)=x^{3}+y^{3}$. Our constraint is $g(x, y)=16$. $\nabla f=\left(y e^{x y}, x e^{x y}\right)$ and $\nabla g=\left(3 x^{2}, 3 y^{2}\right)$, so using the method of Lagrange multipliers we need to find simultaneous solutions in x and y of the following three equations:

$$
\begin{array}{rc}
x^{3}+y^{3} & =16 \\
y e^{x y} & =\lambda 3 x^{2} \\
x e^{x y} & =\lambda 3 y^{2} \tag{3}
\end{array}
$$

Multiplying (2) by x gives $x y e^{x y}=\lambda 3 x^{3}$ and multiplying (3) by y gives $y x e^{x y}=\lambda 3 y^{3}$. So we have that $\lambda x^{3}=\lambda y^{3}$. This is satisfied if $\lambda=0$ or if $x^{3}=y^{3}$. If $\lambda=0$ we deduce from (2) that $y=0$ and from (3) that $x=0$. But the point $(0,0)$ is not on the curve $x^{3}+y^{3}=16$, so $\lambda \neq 0$. So we must have $x^{3}=y^{3}$, or $x=y$. Using (1) this implies that $2 x^{3}=16$ or $x=y=2$. So f attains either a maximum or a minimum of $f(2,2)=e^{4}$ at $(2,2)$.
I claim $f(2,2)=e^{4}$ is the global maximum of f on C. One way to see this is that since f has only one critical point on C, it must behave in one of exactly two ways:
i. f increases on C as x increases until it hits $x=2$, then f decreases. In this case f has a global maximum at $(2,2)$.
ii. f decreases on C as x increases until it hits $x=2$, then f increases. In this case f has a global minimum at $(2,2)$.

From the graph of $x^{3}+y^{3}=16$ we see that most of C lies in either the second or fourth quadrant, implying that $x y<0$ on most of C, or $e^{x y}<1$. Since $e^{4}>1$, we see that f cannot have a global minimum at $(2,2)$, so it must have a global maximum there. Since there is no other critical point, f does not have a minimum on C. In fact we can make f arbitrarily close to 0 by taking points on C with either very large or very small x coordinate.
3. Consider the surface S given by $z^{2}=x^{2}+y^{2}$
(a) Sketch S.

SOLUTION: The surface S is a (double) cone about the z-axis:

(b) Use Lagrange multipliers to find the points on S that are closest to $(4,2,0)$.

SOLUTION:

Minimize the square of the distance function $D=(x-4)^{2}+(y-2)^{2}+z^{2}$ from the point $(4,2,0)$ subject to the constraint $g=x^{2}+y^{2}-z^{2}=0$. We have $\nabla D=\langle 2(x-4), 2(y-2), 2 z\rangle$ and $\nabla g=\langle 2 x, 2 y,-2 z\rangle$. From the picture it is clear that D attains a global minimum value on S (i.e. there are points which are closest to $(4,2,0)$). So one of the critical points we find using Lagrange multipliers will correspond to this minimum value and we simply need to evaluate D at each of the critical points and take the smallest to find the minimum
distance. Using the method of Lagrange multipliers we get the system (divide out by 2 first):

$$
\begin{aligned}
(x-4) & =\lambda x \\
(y-2) & =\lambda y \\
z & =-\lambda z
\end{aligned}
$$

If $z \neq 0$, the last equation tells us that $\lambda=-1$ and then the top equations give $x=2$ and $y=1$; using that $z^{2}=x^{2}+y^{2}$, we get two critical points: $(2,1, \sqrt{5})$, and $(2,1,-\sqrt{5})$. If instead $z=0$, the condition $z^{2}=x^{2}+y^{2}$ forces $x=y=0$ which makes the above equations impossible to solve as the first one becomes $-4=0$. Now, our surface S is singular at the origin and there $\nabla g=0$; we should also regard such singular points as critical points, so the three possible points of minimum distance from $(4,2,0)$ are $(0,0,0),(2,1, \sqrt{5})$, and $(2,1,-\sqrt{5})$. By calculation we see that the squares of the distances of each of these from $(4,2,0)$ are 20,10 , and 10 respectively. So the two points $(2,1, \sqrt{5})$ and $(2,1,-\sqrt{5})$ on the cone $z^{2}=x^{2}+y^{2}$ are of minimum distance from the point $(4,2,0)$.
4. For the function shown on the back of the sheet, use the level curves to find the locations and types (min/max/saddle) for all the critical points of the function:

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}
$$

Use the formula for f and the $2^{\text {nd }}$-derivative test to check your answer.

SOLUTION:

Mins and maxes occur where the level curves shrink toward a point and saddle points occur where the level curve intersects itself. From looking at the set of level curves it appears that $f(x, y)$ has minimums at $(-1,1)$ and $(-1,-1)$, a maximum at $(1,0)$, and saddle points at $(-1,0)$, $(1,1)$, and $(1,-1)$.
Now let's find the critical points precisely. $f_{x}=3\left(1-x^{2}\right)$ and $f_{y}=4 y\left(y^{2}-1\right)$. So f has critical points at $(1,0),(1,1),(1,-1),(-1,0),(-1,1)$, and $(-1,-1) . f_{x x}=-6 x, f_{y y}=12 y^{2}-4$, and $f_{x y}=0$, so the Hessian is $D(x, y)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=-6 x\left(12 y^{2}-4\right) . D(-1,0), D(1,1)$, and $D(1,-1)$ are all negative, so these are saddle points. $D(1,0), D(-1,1)$, and $D(-1,-1)$ are all positive so these are maxes and mins. $f_{x x}(1,0)<0$ so $(1,0)$ is a local max. $f_{x x}(-1,1)$ and $f_{x x}(-1,-1)$ are both positive so these are local mins. This analysis agrees with our guesses.
5. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

SOLUTION:

Set $x=$ length of the box, $y=$ width of the box, $z=$ height of the box. This simply supposes that the box is sitting in the octant $x \geq 0, y \geq 0$, and $z \geq 0$ with its edges along each axis. The volume function is then $V=x y z$ and the constraint is that $L^{2}=x^{2}+y^{2}+z^{2}$. Using the method of Lagrange multipliers we get the system of equations:

$$
\begin{aligned}
y z & =2 \lambda x \\
x z & =2 \lambda y \\
x y & =2 \lambda z \\
x^{2}+y^{2}+z^{2} & =L^{2}
\end{aligned}
$$

Since we want to maximize volume we can assume that $x>0, y>0$, and $z>0$. This rules out the possibility $\lambda=0$ (since $\lambda=0$ implies at least two of the variables x, y, and z are 0). Also this means we can multiply the first equation by x, the second by y, and the third by z to get a new system:

$$
\begin{aligned}
& x y z=2 \lambda x^{2} \\
& x y z=2 \lambda y^{2} \\
& x y z=2 \lambda z^{2}
\end{aligned}
$$

This implies that $x^{2}=y^{2}=z^{2}$. Coupling this with the constraints $x>0, y>0, z>0$ we see that this means $x=y=z$. Plugging this into the constraining equation $L^{2}=x^{2}+y^{2}+z^{2}$ we get that $L^{2}=3 x^{2}$ or $x=L / \sqrt{3}$. So $V=(L / \sqrt{3})^{3}=L^{3} /(3 \sqrt{3})$ is the biggest possible volume for the box.

