
Thursday, February 21 ∗ Solutions ∗ Constrained min/max via Lagrange multipliers.

1. Let C be the curve in R2 given by x3 + y3 = 16.

(a) Sketch the curve C .

SOLUTION:

(b) Is C bounded?

SOLUTION:

No. Given arbitrarily large y values we can find an x value which satisfies the equation. To

see this notice that y = 3p
16−x3, so we can input arbitrarily large (or small) x values and

get a y value for that input.

(c) Is C closed?

SOLUTION:

Yes, C is closed in R2.

2. Consider the function f (x, y) = ex y on C .

(a) Is f continuous? What does the Extreme Value Theorem tell you about the existance of

global min and max of f on C ?

SOLUTION:

Yes, f is continuous. Since C is not bounded, the Extreme Value Theorem does not tell you

anything about the existence of a global min and max of f on C .

(b) Use Lagrange multipliers to determine both the min and max values of f on C .

SOLUTION:

Let g (x, y) = x3 + y3. Our constraint is g (x, y) = 16. ∇ f = (yex y , xex y ) and ∇g = (3x2,3y2),

so using the method of Lagrange multipliers we need to find simultaneous solutions in x

and y of the following three equations:

x3 + y3 = 16 (1)

yex y = λ3x2 (2)

xex y = λ3y2 (3)



Multiplying (2) by x gives x yex y = λ3x3 and multiplying (3) by y gives y xex y = λ3y3. So

we have that λx3 = λy3. This is satisfied if λ = 0 or if x3 = y3. If λ = 0 we deduce from (2)

that y = 0 and from (3) that x = 0. But the point (0,0) is not on the curve x3 + y3 = 16, so

λ 6= 0. So we must have x3 = y3, or x = y . Using (1) this implies that 2x3 = 16 or x = y = 2.

So f attains either a maximum or a minimum of f (2,2) = e4 at (2,2).

I claim f (2,2) = e4 is the global maximum of f on C . One way to see this is that since f has

only one critical point on C , it must behave in one of exactly two ways:

i. f increases on C as x increases until it hits x = 2, then f decreases. In this case f has

a global maximum at (2,2).

ii. f decreases on C as x increases until it hits x = 2, then f increases. In this case f has

a global minimum at (2,2).

From the graph of x3 + y3 = 16 we see that most of C lies in either the second or fourth

quadrant, implying that x y < 0 on most of C , or ex y < 1. Since e4 > 1, we see that f cannot

have a global minimum at (2,2), so it must have a global maximum there. Since there is no

other critical point, f does not have a minimum on C . In fact we can make f arbitrarily

close to 0 by taking points on C with either very large or very small x coordinate.

3. Consider the surface S given by z2 = x2 + y2

(a) Sketch S.

SOLUTION: The surface S is a (double) cone about the z-axis:

(b) Use Lagrange multipliers to find the points on S that are closest to (4,2,0).

SOLUTION:

Minimize the square of the distance function D = (x − 4)2 + (y − 2)2 + z2 from the point

(4,2,0) subject to the constraint g = x2 + y2 − z2 = 0. We have ∇D = 〈
2(x −4),2(y −2),2z

〉
and ∇g = 〈

2x,2y,−2z
〉

. From the picture it is clear that D attains a global minimum value

on S (i.e. there are points which are closest to (4,2,0)). So one of the critical points we find

using Lagrange multipliers will correspond to this minimum value and we simply need

to evaluate D at each of the critical points and take the smallest to find the minimum



distance. Using the method of Lagrange multipliers we get the system (divide out by 2

first):

(x −4) =λx

(y −2) =λy

z =−λz

If z 6= 0, the last equation tells us that λ = −1 and then the top two equations give x = 2

and y = 1; using that z2 = x2 + y2, we get two critical points: (2,1,
p

5), and (2,1,−p5). If

instead z = 0, the condition z2 = x2+ y2 forces x = y = 0 which makes the above equations

impossible to solve as the first one becomes −4 = 0. Now, our surface S is singular at

the origin and there ∇g = 0; we should also regard such singular points as critical points,

so the three possible points of minimum distance from (4,2,0) are (0,0,0), (2,1,
p

5), and

(2,1,−p5). By calculation we see that the squares of the distances of each of these from

(4,2,0) are 20,10, and 10 respectively. So the two points (2,1,
p

5) and (2,1,−p5) on the

cone z2 = x2 + y2 are of minimum distance from the point (4,2,0).

4. For the function shown on the back of the sheet, use the level curves to find the locations and

types (min/max/saddle) for all the critical points of the function:

f (x, y) = 3x −x3 −2y2 + y4

Use the formula for f and the 2nd-derivative test to check your answer.

SOLUTION:

Mins and maxes occur where the level curves shrink toward a point and saddle points occur

where the level curve intersects itself. From looking at the set of level curves it appears that

f (x, y) has minimums at (−1,1) and (−1,−1), a maximum at (1,0), and saddle points at (−1,0),

(1,1), and (1,−1).

Now let’s find the critical points precisely. fx = 3(1− x2) and fy = 4y(y2 −1). So f has critical

points at (1,0), (1,1), (1,−1), (−1,0), (−1,1), and (−1,−1). fxx = −6x, fy y = 12y2 −4, and fx y = 0,

so the Hessian is D(x, y) = fxx fy y − ( fx y )2 =−6x(12y2 −4). D(−1,0),D(1,1), and D(1,−1) are all

negative, so these are saddle points. D(1,0),D(−1,1), and D(−1,−1) are all positive so these are

maxes and mins. fxx(1,0) < 0 so (1,0) is a local max. fxx(−1,1) and fxx(−1,−1) are both positive

so these are local mins. This analysis agrees with our guesses.

5. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume?

SOLUTION:

Set x =length of the box, y = width of the box,z =height of the box. This simply supposes that

the box is sitting in the octant x ≥ 0, y ≥ 0, and z ≥ 0 with its edges along each axis. The volume

function is then V = x y z and the constraint is that L2 = x2 + y2 + z2. Using the method of

Lagrange multipliers we get the system of equations:



y z =2λx

xz =2λy

x y =2λz

x2 + y2 + z2 =L2

Since we want to maximize volume we can assume that x > 0, y > 0, and z > 0. This rules out

the possibility λ= 0 (since λ= 0 implies at least two of the variables x, y , and z are 0). Also this

means we can multiply the first equation by x, the second by y , and the third by z to get a new

system:

x y z =2λx2

x y z =2λy2

x y z =2λz2

This implies that x2 = y2 = z2. Coupling this with the constraints x > 0, y > 0, z > 0 we see that

this means x = y = z. Plugging this into the constraining equation L2 = x2 + y2 + z2 we get that

L2 = 3x2 or x = L/
p

3. So V = (L/
p

3)3 = L3/(3
p

3) is the biggest possible volume for the box.


