Thursday, February 28 ** Curves and integration.

1. Consider the curve C in \mathbb{R}^{3} given by

$$
\mathbf{r}(t)=\left(e^{t} \cos t\right) \mathbf{i}+2 \mathbf{j}+\left(e^{t} \sin t\right) \mathbf{k}
$$

(a) Draw a sketch of C.
(b) Calculate the arc length function $s(t)$, which gives the length of the segment of C between $\mathbf{r}(0)$ and $\mathbf{r}(t)$ as a function of the time t for all $t \geq 0$. Check your answer with the instructor.
(c) Now invert this function to find the inverse function $t(s)$. This gives time as a function of arclength, that is, tells how long you must travel to go a certain distance.
(d) Suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ is a function. We can get another parameterization of C by considering the composition

$$
\mathbf{f}(s)=\mathbf{r}(h(s))
$$

This is called a reparametrization. Find a choice of h so that
i. $\mathbf{f}(0)=\mathbf{r}(0)$
ii. The length of the segment of C between $\mathbf{f}(0)$ and $\mathbf{f}(s)$ is s. (This is called parametrizing by arc length.)
Check your answer with the instructor.
(e) Without calculating anything, what is $\left|\mathbf{f}^{\prime}(s)\right|$?
2. Consider the curve C given by the parametrization $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ where $\mathbf{r}(t)=\left(\sin t, \cos t, \sin ^{2} t\right)$.
(a) Show that C is in the intersection of the surfaces $z=x^{2}$ and $x^{2}+y^{2}=1$.
(b) Use (a) to help you sketch the curve C.
3. (a) Sketch the top half of the sphere $x^{2}+y^{2}+z^{2}=5$. Check that $P=(1,1, \sqrt{3})$ is on this sphere and add this point to your picture.
(b) Find a function $f(x, y)$ whose graph is the top-half of the sphere. Hint: solve for z.
(c) Imagine an ant walking along the surface of the sphere. It walks down the sphere along the path C that passes through the point P in the direction parallel to the $y z$-plane. Draw this path in your picture.
(d) Find a parametrization $\mathbf{r}(t)$ of the ant's path along the portion of the sphere shown in your picture. Specify the domain for \mathbf{r}, i.e. the initial time when the ant is at P and the final time when it hits the $x y$-plane.
4. As in 1 (d), consider a reparametrization

$$
\mathbf{f}(s)=\mathbf{r}(h(s))
$$

of an arbitrary vector-valued function $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Use the chain rule to calculate $\left|\mathbf{f}^{\prime}(s)\right|$ in terms of \mathbf{r}^{\prime} and h^{\prime}.

