Thursday, February 28 * **Solutions** * *Curves and integration.*

1. Consider the curve *C* in \mathbb{R}^3 given by

$$\mathbf{r}(t) = \left(e^t \cos t\right)\mathbf{i} + 2\mathbf{j} + \left(e^t \sin t\right)\mathbf{k}$$

(a) Draw a sketch of *C*.

Solution. The sketch of *C* is the following graph.

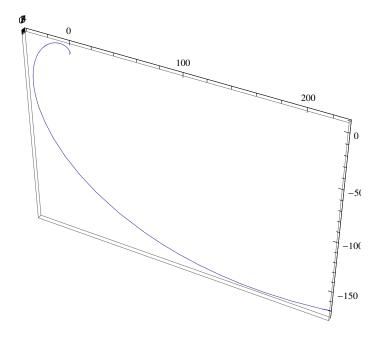


Figure 1: Sketch of *C*.

(b) Calculate the arc length function s(t), which gives the length of the segment of *C* between $\mathbf{r}(0)$ and $\mathbf{r}(t)$ as a function of the time *t* for all $t \ge 0$. Check your answer with the instructor.

Solution. Since

$$x'(t) = e^t \cos t - e^t \sin t, \qquad y'(t) = 0, \qquad z'(t) = e^t \sin t + e^t \cos t,$$

we have

$$|\mathbf{r}'(t)| = \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2} = \sqrt{2}e^t.$$

Hence the arc length is

$$s(t) = \int_0^t |\mathbf{r}'(u)| du = \int_0^t \sqrt{2}e^u du = \sqrt{2}e^t - \sqrt{2}.$$

(c) Now invert this function to find the inverse function t(s). This gives time as a function of arclength, that is, tells how long you must travel to go a certain distance.

Solution. Solve $s = \sqrt{2}e^t - \sqrt{2}$, which gives $e^t = \frac{s + \sqrt{2}}{\sqrt{2}}$, and so $t = t(s) = \ln\left(\frac{s + \sqrt{2}}{\sqrt{2}}\right)$.

(d) Suppose $h: \mathbb{R} \to \mathbb{R}$ is a function. We can get another parameterization of *C* by considering the composition

$$\mathbf{f}(s) = \mathbf{r}(h(s))$$

This is called a *reparametrization*. Find a choice of *h* so that

- i. f(0) = r(0)
- ii. The length of the segment of *C* between $\mathbf{f}(0)$ and $\mathbf{f}(s)$ is *s*. (This is called parametrizing by arc length.)

Check your answer with the instructor.

Solution. From (c) we know $t = \ln\left(\frac{s+\sqrt{2}}{\sqrt{2}}\right)$. When s = 0, we have $t = \ln 1 = 0$. Then we can choose

$$h(s) = \ln\left(\frac{s+\sqrt{2}}{\sqrt{2}}\right).$$

(e) Without calculating anything, what is $|\mathbf{f}'(s)|$?

Solution. Since $s = \int_0^s |\mathbf{f}'(u)| du$, then by the fundamental theorem of calculus, we can differentiate both sides with respect to *s* and get $1 = |\mathbf{f}'(s)|$.

- 2. Consider the curve *C* given by the parametrization $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^3$ where $\mathbf{r}(t) = (\sin t, \cos t, \sin^2 t)$.
 - (a) Show that *C* is in the intersection of the surfaces $z = x^2$ and $x^2 + y^2 = 1$.

Solution. Since $x = \sin t$, $y = \cos t$, $z = \sin^2 t$, it is very easy to check that $z = x^2$ and $x^2 + y^2 = 1$. So the curve *C* lies in both these two surfaces, hence is in the intersection of them.

(b) Use (a) to help you sketch the curve *C*.

Solution. The left graph is the intersection of the two surfaces, while the right one is the curve.

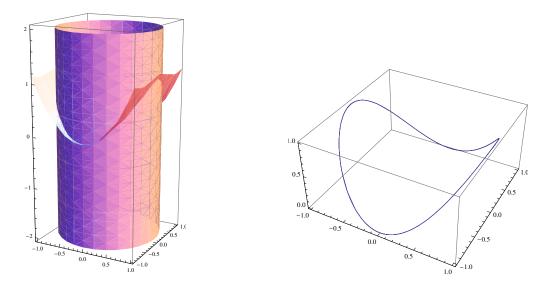


Figure 2: Two surfaces and the curve *C*.

3. (a) Sketch the top half of the sphere $x^2 + y^2 + z^2 = 5$. Check that $P = (1, 1, \sqrt{3})$ is on this sphere and add this point to your picture.

Solution. The top half of the sphere is shown in Figure 3 (the black dot is *P*). Since $1^2 + 1^2 + (\sqrt{3})^2 = 5$, we know *P* is on this sphere.

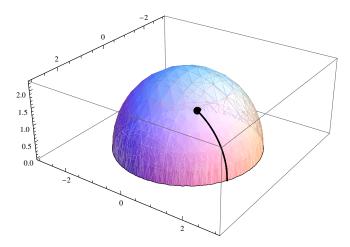


Figure 3: Half sphere and the path.

(b) Find a function f(x, y) whose graph is the top-half of the sphere. Hint: solve for z.

Solution. Since $x^2 + y^2 + z^2 = 5$, we have $z^2 = 5 - x^2 - y^2$, and so $z = \pm \sqrt{5 - x^2 - y^2}$. As we only want the top half of the sphere, we can let $f(x, y) = \sqrt{5 - x^2 - y^2}$.

(c) Imagine an ant walking along the surface of the sphere. It walks *down* the sphere along

the path *C* that passes through the point *P* in the direction parallel to the *yz*-plane. Draw this path in your picture.

Solution. The black curve in Figure 3 is the path.

(d) Find a parametrization $\mathbf{r}(t)$ of the ant's path along the portion of the sphere shown in your picture. Specify the domain for \mathbf{r} , i.e. the initial time when the ant is at *P* and the final time when it hits the *xy*-plane.

Solution. x = 1 along the path and $f(1, y) = \sqrt{4 - y^2}$, so setting y = t we get the parametrization

$$\mathbf{r}(t) = (1, t, \sqrt{4 - t^2}).$$

4. As in 1(d), consider a reparametrization

$$\mathbf{f}(s) = \mathbf{r}(h(s))$$

of an arbitrary vector-valued function $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^3$. Use the chain rule to calculate $|\mathbf{f}'(s)|$ in terms of \mathbf{r}' and h'.

Solution. By the chain rule, $\mathbf{f}'(s) = \mathbf{r}'(h(s)) h'(s)$. Taking magnitudes of both sides we have $|\mathbf{f}'(s)| = |\mathbf{r}'(h(s))| \cdot |h'(s)|$.