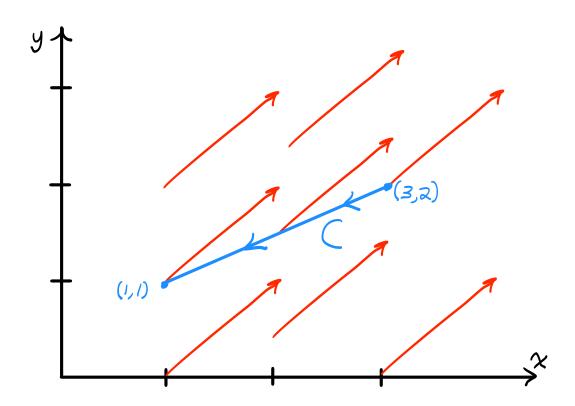
Tuesday, March 5 ** Integrating vector fields.

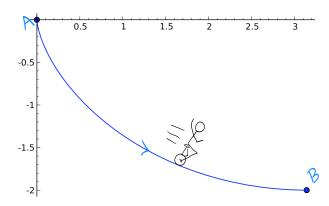
- 1. Consider the vector field $\mathbf{F} = (y, 0)$ on \mathbb{R}^2 .
 - (a) Draw a sketch of **F** on the region where $-2 \le x \le 2$ and $-2 \le y \le 2$. Check you answer with the instructor.
 - (b) Consider the following two curves which *start* at A = (-2,0) and *end* at B = (2,0), namely the line segment C_1 and upper semicircle C_2 .

 Add these curves to your sketch, and compute both $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$. Check you answers with the instructor.
 - (c) Based on your answer in (b), could **F** be ∇f for some $f: \mathbb{R}^2 \to \mathbb{R}$? Explain why or why not.
- 2. Consider the curve *C* and vector field **F** shown below.



- (a) Calculate $\mathbf{F} \cdot \mathbf{T}$, where here \mathbf{T} is the unit tangent vector along C. Without parameterizing C, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by using the fact that it is equal to $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$.
- (b) Find a parameterization of C and a formula for \mathbf{F} . Use them to check your answer in (a) by computing $\int_C \mathbf{F} \cdot d\mathbf{r}$ explicitly.
- 3. Consider the points A = (0,0) and $B = (\pi, -2)$. Suppose an object of mass m moves from A to B and experiences the constant force $\mathbf{F} = -mg\mathbf{j}$, where g is the gravitational constant.
 - (a) If the object follows the straight line from *A* to *B*, calculate the work *W* done by gravity using the formula from the first week of class.

(b) Now suppose the object follows half of an inverted cycloid *C* as shown below. Explicitly parameterize *C* and use that to calculate the work done via a line integral.



- (c) Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ so that $\nabla f = \mathbf{F}$. Use the Fundamental Theorem of Line Integrals to check your answers for (a) and (b). Have you seen the quantity -f anywhere before? If so, what was its name?
- 4. If you get this far, work #52 from Section 16.2:
 - **48.** Experiments show that a steady current *I* in a long wire produces a magnetic field **B** that is tangent to any circle that lies in the plane perpendicular to the wire and whose center is the axis of the wire (as in the figure). *Ampère's Law* relates the electric current to its magnetic effects and states that

$$\int_C \mathbf{B} \cdot d\mathbf{r} = \mu_0 I$$

where I is the net current that passes through any surface bounded by a closed curve C, and μ_0 is a constant called the permeability of free space. By taking C to be a circle with radius r, show that the magnitude $B = |\mathbf{B}|$ of the magnetic field at a distance r from the center of the wire is

$$B = \frac{\mu_0 I}{2\pi r}$$

