Thursday, March 14 ** Introduction to multiple integrals

1. Evaluate the following integral by reversing the order of integration:

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

(Hint: When you change to $d x d y$, be sure to also change the bounds of integration.)
2. Consider the region bounded by the curves determined by $-2 x+y^{2}=6$ and $-x+y=-1$.
(a) Sketch the region R in the plane.
(b) Set up and evaluate an integral of the form $\iint_{R} d A$ that calculates the area of R.
3. Consider the region R which lies above the x-axis and between the circles of radius 1 and 2 centered at (0,0). Without using polar coordinates, evaluate

$$
\iint_{R} y d A .
$$

4. Evaluate

$$
\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

Hint: don't do it directly.
5. The function $P(x)=e^{-x^{2}}$ is fundamental in probability.
(a) Sketch the graph of $P(x)$. Explain why it is called a "bell curve."
(b) Compute $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ using the following brilliant strategy of Gauss:
i. Instead of computing I, compute $I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)$.
ii. Rewrite I^{2} as an integral of the form $\iint_{R} f(x, y) d A$ where R is the entire Cartesian plane.
iii. Convert that integral to polar coordinates.
iv. Evaluate to find I^{2}. Deduce the value of I.

Amazingly, it can be mathematically proven that there is NO elementary function $Q(x)$ (that is, function built up from sines, cosines, exponentials, and roots using "usual" operations) for which $Q^{\prime}(x)=P(x)$.
6. Compute $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y$.

