Tuesday, April 2 ** Changing coordinates

1. Consider the region R in \mathbb{R}^{2} shown below at right. In this problem, you will do a change of coordinates to evaluate:

$$
\iint_{R} x-2 y d A
$$

(a) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the unit square S to R.

Write you answer both as a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and as $T(u, v)=(a u+b v, c u+d v)$, and check your answer with the instructor.
(b) Compute $\iint_{R} x-2 y d A$ by relating it to an integral over S and evaluating that. Check your answer with the instructor.
2. Another simple type of transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a translation, which has the general form $T(u, v)=(u+a, v+b)$ for a fixed a and b.
(a) If T is a translation, what is its Jacobian matrix? How does it distort area?
(b) Consider the region $S=\left\{u^{2}+v^{2} \leq 1\right\}$ in \mathbb{R}^{2} with coordinates (u, v), and the region $R=$ $\left\{(x-2)^{2}+(y-1)^{2} \leq 1\right\}$ in \mathbb{R}^{2} with coordinates (x, y).
Make separate sketches of S and R.
(c) Find a translation T where $T(S)=R$.
(d) Use T to reduce

$$
\iint_{R} x d A
$$

to an integral over S, and then evaluate that new integral using polar coordinates.
(e) Check your answer in (d) with the instructor.

Problems 3 and 4 on the back.

3. Consider the region R shown below. Here the curved left side is given by $x=y-y^{2}$. In this problem, you will find a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which takes the unit square $S=[0,1] \times[0,1]$ to R.

(a) As a warm up, find a transformation that takes S to the rectangle $[0,2] \times[0,1]$ which contains R.
(b) Returning to the problem of finding T taking S to R, come up with formulas for $T(u, 0)$, $T(u, 1), T(0, v)$, and $T(1, v)$. Hint: For three of these, use your answer in part (a).
(c) Now extend your answer in (b) to the needed transformation T. Hint: Try "filling in" between $T(0, v)$ and $T(1, v)$ with a straight line.
(d) Compute the area of R in two ways, once using T to change coordinates and once directly.
4. If you get this far, evaluate the integrals in Problems 1 and 2 directly, without doing a change of coordinates. It's a fun-filled task. . .
