Tuesday, April $9 \quad * * \quad$ Parametrizations and Integrals

1. Consider the ellipsoid with implicit equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(a) Parameterize this ellipsoid.
(b) Set up, but do not evaluate, a double integral that computes its surface area.
2. Let

$$
\mathbf{r}(u, v)=\langle(2+\cos u) \cos v,(2+\cos u) \sin v, \sin u\rangle,
$$

where $0 \leq u \leq 2 \pi$ and $0 \leq \nu \leq 2 \pi$.
(a) Sketch the surface parameterized by this function.
(b) Compute its surface area.
3. Consider the surface integral

$$
\iint_{\Sigma} z d S
$$

where Σ is the surface with sides S_{1} given by the cylinder $x^{2}+y^{2}=1, S_{2}$ given by the unit disk in the $x y$-plane, and S_{3} given by the plane $z=x+1$. Evaluate this integral as follows:
(a) Parameterize S_{1} using (θ, z) coordinates.
(b) Evaluate the integral over the surface S_{2} without parameterizing.
(c) Parameterize S_{3} in (Des)cartesian coordinates and evaluate the resulting integral using polar coordinates.
4. Let C be the circle in the plane with equation $x^{2}+y^{2}-2 x=0$.
(a) Parameterize C as follows. For each choice of a slope t, consider the line L_{t} whose equation is $y=t x$. Then the intersection $L_{t} \cap C$ of L_{t} and C contains two points, one of which is $(0,0)$. Find the other point of intersection, and call its x - and y-coordinates $x(t)$ and $y(t)$. Compute a formula for $\mathbf{r}(t)=\langle x(t), y(t)\rangle$. Check your answer with your TA.
(b) Suppose that $t=\frac{p}{q}$ is a rational number. Show that $x(p / q)$ and $y(p / q)$ are also rational numbers. Explain how, by clearing denominators in $x(p / q)-1$ and $y(p / q)$, you can find a a triple of integers U, V, and W for which $U^{2}+V^{2}=W^{2}$.
(c) Compute $\int_{C} \frac{1}{2}\langle-y, x\rangle \cdot d \mathbf{r}$ using your parameterization above.

