Thursday, April 11 ** Green's Theorem

Green's Theorem is a 2-dimensional version of the Fundamental Theorem of Calculus: it relates the (integral of) a vector field **F** on the boundary of a region *D* to the integral of a suitable *derivative* of **F** over the whole of *D*.

- 1. Let *D* be the unit square with vertices (0,0), (1,0), (0,1), and (1,1) and consider the vector field $\mathbf{F}(x, y) = \langle P(x, y), Q(x, y) \rangle = \langle xy, x + y \rangle$. See below right for a plot.
 - (a) For the curve $C = \partial D$ oriented counterclockwise, directly evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. Hint: to speed things up, have each group member focus on one side of *C*.
 - (b) Now compute $\iint_D \frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} dA$.
 - (c) Check that Green's Theorem works in this example.

2. Compute the line integral of $F(x, y) = \langle x^3, 4x \rangle$ along the path *C* shown at right against a grid of unit-sized squares. To save work, use Green's Theorem to relate this to a line integral over the vertical path joining *B* to *A*. Hint: Look at the region *D* bounded by these two paths. Check your answer with the instructor.

3. Consider the quarter circle *C* shown below and the vector field $\mathbf{F}(x, y) = \langle 2xe^y, x + x^2e^y \rangle$. The goal of this problem is to compute the line integral $I_0 = \int_C \mathbf{F} \cdot d\mathbf{r}$.

- (a) Parameterize *C* and start directly expanding out I_0 into an ordinary integral in *t* until you are convinced that finding I_0 this way will be a highly unpleasant experience.
- (b) Check that **F** is *not* conservative, so we can't use that trick directly to compute I_0 .
- (c) Find a function f(x, y) such that $\mathbf{F} = \mathbf{G} + \nabla f$, where **G** is the vector field $\langle 0, x \rangle$.
- (d) Argue geometrically that **G** integrates to 0 along any line segment contained in either the *x*-axis or the *y*-axis.
- (e) Use part (d) with Green's Theorem to show that $\int_C \mathbf{G} \cdot d\mathbf{r} = 4\pi$.
- (f) Combine parts (c–e) with the Fundamental Theorem of Line Integrals to evaluate I_0 . Check your answer with the instructor.
- 4. Consider the shaded region *V* shown, bounded by a circle C_1 of radius 5 and two smaller circles C_2 and C_3 of radius 1. Suppose $\mathbf{F}(x, y) = \langle P, Q \rangle$ is a vector field where $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} = 2$ on *V*. Assuming in addition that $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 3\pi$ and $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = 4\pi$, compute $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$. Check your answer with the instructor.

- 5. Suppose *D* is a region in the plane bounded by a closed curve *C*. Use Green's Theorem to show that both $\int_C x \, dy$ and $-\int_C y \, dx$ are equal to Area(*D*).
- 6. The curve satisfying $x^3 + y^3 = 3xy$ is called the *Folium of Descartes* and is shown at right.
 - (a) Let *C* be the "bulb" part of this folium, more precisely, the part in the positive quadrant. Show that any line *y* = *tx* for *t* > 0 meets *C* in exactly two points, one of which is the origin. Use this fact to parameterize *C* by taking the slope *t* as the parameter.
 - (b) Use part (a) and Problem 5 to compute the area bounded by *C*. Check your answer with the instructor.

