Thursday, April $11 \quad * * \quad$ Green's Theorem

Green's Theorem is a 2-dimensional version of the Fundamental Theorem of Calculus: it relates the (integral of) a vector field \mathbf{F} on the boundary of a region D to the integral of a suitable derivative of \mathbf{F} over the whole of D.

1. Let D be the unit square with vertices $(0,0),(1,0),(0,1)$, and $(1,1)$ and consider the vector field $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=\langle x y, x+y\rangle$. See below right for a plot.
(a) For the curve $C=\partial D$ oriented counterclockwise, directly evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Hint: to speed things up, have each group member focus on one side of C.
(b) Now compute $\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A$.
(c) Check that Green's Theorem works in this example.

2. Compute the line integral of $\mathbf{F}(x, y)=\left\langle x^{3}, 4 x\right\rangle$ along the path C shown at right against a grid of unit-sized squares. To save work, use Green's Theorem to relate this to a line integral over the vertical path joining B to A. Hint: Look at the region D bounded by these two paths. Check your answer with the instructor.

3. Consider the quarter circle C shown below and the vector field $\mathbf{F}(x, y)=\left\langle 2 x e^{y}, x+x^{2} e^{y}\right\rangle$. The goal of this problem is to compute the line integral $I_{0}=\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

(a) Parameterize C and start directly expanding out I_{0} into an ordinary integral in t until you are convinced that finding I_{0} this way will be a highly unpleasant experience.
(b) Check that \mathbf{F} is not conservative, so we can't use that trick directly to compute I_{0}.
(c) Find a function $f(x, y)$ such that $\mathbf{F}=\mathbf{G}+\nabla f$, where \mathbf{G} is the vector field $\langle 0, x\rangle$.
(d) Argue geometrically that \mathbf{G} integrates to 0 along any line segment contained in either the x-axis or the y-axis.
(e) Use part (d) with Green's Theorem to show that $\int_{C} \mathbf{G} \cdot d \mathbf{r}=4 \pi$.
(f) Combine parts (c-e) with the Fundamental Theorem of Line Integrals to evaluate I_{0}. Check your answer with the instructor.
4. Consider the shaded region V shown, bounded by a circle C_{1} of radius 5 and two smaller circles C_{2} and C_{3} of radius 1 . Suppose $\mathbf{F}(x, y)=\langle P, Q\rangle$ is a vector field where $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=2$ on V. Assuming in addition that $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=3 \pi$ and $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=4 \pi$, compute $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$. Check your answer with the instructor.

5. Suppose D is a region in the plane bounded by a closed curve C. Use Green's Theorem to show that both $\int_{C} x d y$ and $-\int_{C} y d x$ are equal to $\operatorname{Area}(D)$.
6. The curve satisfying $x^{3}+y^{3}=3 x y$ is called the Folium of Descartes and is shown at right.
(a) Let C be the "bulb" part of this folium, more precisely, the part in the positive quadrant. Show that any line $y=t x$ for $t>0$ meets C in exactly two points, one of which is the origin. Use this fact to parameterize C by taking the slope t as the parameter.
(b) Use part (a) and Problem 5 to compute the area bounded by C. Check your an-
 swer with the instructor.
