Thursday, April 25 ** More on Stokes' Theorem

1. Let $\mathbf{F}=\left\langle y^{2}, x^{2}, z^{2}\right\rangle$. Show that

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

for any two closed curves as shown lying on a cylinder about the z-axis.

2. Consider the surface T which is the intersection of the plane $x+2 y+3 z=1$ with the first octant.
(a) Draw a picture of T.
(b) Use Stokes' Theorem to evaluate $\int_{\partial T} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}=\langle y,-2 z, 4 x\rangle$. Here, you should orient ∂T counterclockwise when viewed from $(2,2,2)$.
3. Carefully explain how Green's Theorem is actually a special case of Stokes' Theorem.
4. Work the following problem.
20. The magnetic field \mathbf{B} due to a small current loop (which we place at the origin) is called a magnetic dipole (Figure 18). Let $\rho=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. For ρ large, $\mathbf{B}=\operatorname{curl}(\mathbf{A})$, where

$$
\mathbf{A}=\left\langle-\frac{y}{\rho^{3}}, \frac{x}{\rho^{3}}, 0\right\rangle
$$

(a) Let \mathcal{C} be a horizontal circle of radius R with center $(0,0, c)$, where c is large. Show that \mathbf{A} is tangent to \mathcal{C}.
(b) Use Stokes' Theorem to calculate the flux of \mathbf{B} through \mathcal{C}.

