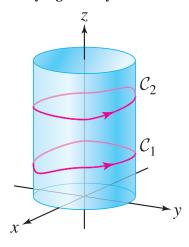
Thursday, April 25 ** More on Stokes' Theorem

1. Let $\mathbf{F} = \langle y^2, x^2, z^2 \rangle$. Show that

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two closed curves as shown lying on a cylinder about the *z*-axis.



- 2. Consider the surface *T* which is the intersection of the plane x+2y+3z=1 with the first octant.
 - (a) Draw a picture of T.
 - (b) Use Stokes' Theorem to evaluate $\int_{\partial T} \mathbf{F} \cdot d\mathbf{r}$ for $\mathbf{F} = \langle y, -2z, 4x \rangle$. Here, you should orient ∂T counterclockwise when viewed from (2,2,2).
- 3. Carefully explain how Green's Theorem is actually a special case of Stokes' Theorem.
- 4. Work the following problem.
 - **20.** The magnetic field **B** due to a small current loop (which we place at the origin) is called a **magnetic dipole** (Figure 18). Let $\rho = (x^2 + y^2 + z^2)^{1/2}$. For ρ large, $\mathbf{B} = \operatorname{curl}(\mathbf{A})$, where

$$\mathbf{A} = \left\langle -\frac{y}{\rho^3}, \frac{x}{\rho^3}, 0 \right\rangle$$

- (a) Let C be a horizontal circle of radius R with center (0, 0, c), where c is large. Show that A is tangent to C.
- (b) Use Stokes' Theorem to calculate the flux of B through $\mathcal{C}.$

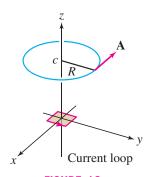


FIGURE 18