Sheet 3

Hand in on Thursday, 1st November, prior to the lecture.

Exercise 1

Let \mathfrak{g} be a nilpotent Lie algebra. Show that the Killing form on \mathfrak{g} is identically zero. (4 points)

Exercise 2

Let κ denote the Killing form on $\mathfrak{gl}_n(\mathbb{C})$ and let \mathfrak{h} , \mathfrak{n}_+ and \mathfrak{n}_- denote the subspaces of diagonal, strictly upper triangular and strictly lower triangular matrices, respectively.

- (a) Show that \mathfrak{h} is orthogonal to \mathfrak{n}_+ and \mathfrak{n}_- with respect to κ , and that the resriction of κ to $\mathfrak{n}_+ \oplus \mathfrak{n}_-$ is non-degenerate. (Hint: It might help to give a formula for κ in terms of matrix units.) (1 point)
- (b) Calculate \mathfrak{n}_+^{\perp} . (1 point)
- (c) Describe the radical of the restriction of κ to \mathfrak{h} , and conclude that the restriction of κ to $\mathfrak{sl}_n(\mathbb{C})$ is non-degenerate. (We have seen on sheet 2 that $\mathfrak{sl}_n(\mathbb{C})$ is simple. Hence part c) also follows from the Cartan-Killing criterion.) (2 points)

Exercise 3

Prove Schur's lemma: if V is a simple, finite-dimensional \mathfrak{g} -module over an algebraically closed field and $f \in \operatorname{End}_{\mathfrak{g}}(V)$ is an endomorphism of V commuting with the \mathfrak{g} -action, then f is a scalar. (Hint: Consider the eigenspaces of f.) (4 points)

Exercise 4

Prove that abstract and classical Jordan decompositions agree in the following cases:

- (a) $\mathfrak{sl}_n(\mathbb{C}) \subseteq \mathfrak{gl}_n(\mathbb{C})$
- (b) $\mathfrak{sp}_{2n}(\mathbb{C}) \subseteq \mathfrak{gl}_{2n}(\mathbb{C})$
- (c) $\mathfrak{so}_n(\mathbb{C}) \subseteq \mathfrak{gl}_n(\mathbb{C})$

Here, $\mathfrak{sp}_{2n}(\mathbb{C}) := \{ A \in \mathfrak{gl}_{2n}(\mathbb{C}) \mid \omega(Av, w) = -\omega(v, Aw) \}$ for ω some non-degenerate, skew-symmetric form on \mathbb{C}^{2n} , and $\mathfrak{so}_n(\mathbb{C}) := \{ A \in \mathfrak{gl}_n(\mathbb{C}) \mid \langle Av, w \rangle = -\langle v, Aw \rangle \}$ for $\langle -, - \rangle$ some non-degenerate symmetric form on \mathbb{C}^n . (4 points)

Remark: In fact, any semisimple Lie algebra $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{C})$ is automatically closed under the formation of classical Jordan components.