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Using neural networks 
to search for interesting 
mathematical objects
Machine Learning and Mathematics, KIAS

Geordie Williamson





The icosahedron throughout the ages

Plato’s Timaeus (c. 360 B.C)

Euclid’s Elements (c. 300 B.C)

Kepler’s

Mysterium Cosmographicum

(1596).

Poincaré’s homology sphere, which led 

to the Poincaré conjecture (1904), solved 

by Perelman (2002).

The University of Sydney



“The methods for coming up with useful examples in 

mathematics. . . are even less clear than the methods for 

proving mathematical statements.” — Gil Kalai.



On the search for examples

Alongside the search for a proof, the search for interesting 

examples is an important part of the mathematical process.

Sometimes one example can give rise to an entire field 

(e.g. the Mandelbrot set, the KdV equation,...).

The absence of general methods to find examples is often 

a blind spot in many current “AI for math” initiatives.

Interesting examples are often surprising and hard to find. 

Neural networks detect general statistical patterns, so it is a 

priori surprising that they can be helpful.



Plan of talk

- A story about simple groups

- Constructions in combinatorics using transformers

- Finding interesting polytopes using transformers

- Attempting to attack the Jones unknot problem with a neural network.



Finite simple groups and computers

A historical example of human computer interaction



Finite simple groups

The building blocks of finite symmetry.

“Simple groups are to (symmetry) groups, as primes are to whole numbers.”

Example: There are 60 rotational symmetries of the icosahedron, and these 

provide a simple group.



Finite simple groups

The building blocks of finite symmetry.

1832-1962: Galois, Jordan, Brauer, Chevalley, Steinberg, Thompson, ...

“most finite simple groups are close relatives of continuous symmetry”.

Algebraists in the audience will know that we have names for them:

ℤ/𝑝ℤ, 𝐴𝑛, 𝑃𝐺𝐿𝑛(𝔽𝑞), ..., Sz 22𝑛+1 , … , 𝐸8(𝔽𝑞).

1861, 1873: Mathieu discovered 5 “sporadic” groups of sizes

7920, 95040, 443520, 10200960 and 244823040.

Are there any others? Until 1963 this was the full list.



Zvonimir Janko

- Moved to Canberra in the early 1960s as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration 

could not occur, he became convinced that it could.

(7 × 7 matrices with coefficients in ℤ/11ℤ))



Zvonimir Janko

-- D. Taylor and T. Gagen

- Moved to Canberra in the early 1960s  as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration 

could not occur, he became convinced that it could.

- Janko assigned two students (Terry Gagen and Martin Ward) the task of verifying that 

two matrices generated a group of order 175560. (They worked on an IBM 1620, with 

40K of memory.)



Zvonimir Janko

- Moved to Canberra in the early 1960s  as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration 

could not occur, he became convinced that it could.

- Janko assigned two students (Terry Gagen and Martin Ward) the task of verifying that 

two matrices generated a group of order 175560. (They worked on an IBM 1620, with 

40K of memory.)

- The first new sporadic simple group in over a century!



The monster simple group

Over the next decade a further 18 sporadic groups were found.

The largest is the monster simple group. Its order is

808017424794512875886459904961710757005754368000000000

which is roughly the number of elementary particles in Jupiter.

It was conjectured to exist in 1975 by Fischer, and proved to exist by Griess 

in 1982. Computation in the monster is a major challenge.

Martin Seysen’s mmgroup package (2022) is a major advance.



The classification of finite simple groups

It is now generally agreed that all finite simple groups are known. They 

consist of the known families, together with the 26 sporadic groups, 

including the Mathieu, Janko and monster simple groups.

The road to their discovery combined human ingenuity with computation.

Would we have the classification today without computers?

The monster resisted computation for nearly forty years.

For one sporadic simple group (the O’Nan simple group) we have no 

existence proof which doesn’t involve computers!



Zvonimir Janko

--- from an interview with Janko by Pero Zelenika.



-- From Sims, A method of constructing a group from a subgroup, 1978.



Example 1: Extremal combinatorics



The University of Sydney

What’s the largest subset of an 𝑛 × 𝑛 grid without isosceles 

triangles? 

an isosceles triangle



The University of Sydney

What’s the largest subset of an 𝑛 × 𝑛 grid without isosceles 

triangles? 
- A 2𝑑 variant of a classic problem in number 

theory and additive combinatorics (“progression 

free subsets”, Green–Tao theorem).

- Little is known about optimal solutions.

- Hard to produce examples which are

close to extremal.

- Highly addictive problem!



Learning from good solutions

We generate many examples by local 

search (randomly adding points, without 

creating isosceles triangles).

We take top 10%.

Each construction gives token sequence.

These are used to train a GPT-2 style 

transformer. We then sample from the 

transformer to produce new examples.

A tiny percentage of samples do better 

than the training set under local search. 

Amazingly, one often arrives at a near 

optimal solution.

The University of Sydney

Image ©: dataflowr

Can Iterate!



Fraction of four-leaf 

clover found 0.001%!



Transformers as generators

This technique generates best known 

solutions to several problems in extremal 

combinatorics.

Recent applications of Ramos and Sun to 

conjectures in graph theory.

Charton, Ellenberg, Wagner, W.

PatternBoost: Constructions in Mathematics 

with a Little Help from AI

https://arxiv.org/abs/2411.00566



Transformers as generators

This technique works well on some problems 

and struggles on others. We are able ot find 

the the best known solutions to several 

problems in extremal combinatorics.

We are also able to disprove a 30-year old 

conjecture of Niali Graham about the graph of 

the hypercube:

What is the smallest subgraph of the 

hypercube which still has diameter n?

81 edges vs. conjectured 82!



Linear programming and Hirsch conjecture

Neural networks guiding search on a hard problem



Linear programming

- A core problem in optimization.

- Used > 10 million times a day.



Linear programming

- A core problem in optimization.

- Used > 10 million times a day.

- The simplex method is extremely efficient at 

solving it in practice, but we don’t know why.

- Hirsch problem: How efficiently can we navigate 

the vertices of a polytope, if we are only allowed 

to traverse edges?



The width of polytopes

Hirsch conjecture (1957): The vertex-edge graph of any 

polytope with n facets in dimension d has diameter at most n-d.

Santos (2012): There exists a 43-dimensional polytope with 86 

facets of diameter at least 44 > 43 = 86 – 43.

Thus, the Hirsch conjecture is false!

Santos reduced this problem to an extremely difficult problem in 

5 dimensions. Very few other examples known. No examples 

which don’t use Santos’ 5d trick are known.



The width of polytopes

Hirsch conjecture (1957): The vertex-edge graph of any 

polytope with n facets in dimension d has diameter at most n-d.

Santos (2012): There exists a 43-dimensional polytope with 86 

facets of diameter 44 > 43 = 86 – 43.

Thus, the Hirsch conjecture is false!

Davies, Gupta, Racanière, Swirszcz, Wagner, Weber, W.:

“Hopper” algorithm using transformer neural network.

Millions of new counter-examples + smallest known 

counterexample (19 dimensional).



Hopper algorithm

Build up polytope by adding point after point:



Hopper algorithm

Build up polytope by adding point after point:

Where to add new point?

20 (generic) points in 4 dimensions 

determine 

22 950 110 195 021

possible regions!



Hopper algorithm

- Start by random sampling. Remember which hyperplanes were involved.

- Transformer neural network tries to predict hyperplanes which will be 

involved in promising polytopes (with respect to several heuristics). 

- Eventually, a tiny fraction (~0.001%) of searches yield a counter-example.



Example 2: Jones unknot conjecture



Does the Jones polynomial detect the unknot?

knot 𝐿 (oriented) 𝑉𝐿 ∈ ℤ[𝑞, 𝑞−1] (Jones polynomial)



Does the Jones polynomial detect the unknot?

Joint work with Charton, Narayanan and Yacobi (building on earlier work with Gibson and Yacobi).

We concentrate on matrix problems: do there exist unexpected relations between matrices. E.g.

Appears to be extremely difficult problem. In [CNWY], several new (non-AI) ideas introduced, which 

allow us to recover all known relations, and many new ones.

However, we don’t (yet) find any previously unknown case of non-faithfulness.

The focus here is an interesting part of this work where we use neural networks.



Thought experiment

Imagine you are looking for a rare flower.

After several days searching you find nothing.

However, you have learnt a lot of other things.

Can these other things be useful in some way?

Areas which seem unusual might be more likely to contain rare 

species, and in particular the flower you are after.

You might want to concentrate your search on areas of 

“maximum surprise”. That is, areas where your ability to predict 

your environment is low.



Thought experiment in practice

We are looking for a rare knot / braid (a needle in the haystack).

We train a neural network to predict an unrelated quantity (“right 

descent set of rightmost Garside factor”) on which the neural 

network can achieve good accuracy.

Neural network achieves good accuracy on this problem.

“Descent set confusion”: 𝑙1 norm between prediction and reality.

Use descent set confusion as a score function,

i.e. braids with high descent set confusion

(i.e. unexpected for neural network)

are more likely to be investigated.

braid

braid closure

(knot)



Thought experiment in practice

To our delight, this actually works!

On the right we see the results on a toy example. 

Descent set confusion dramatically improves the 

probability of successful search.

For experts: Here neural network is functioning like a 

value network in reinforcement learning.



Summary

I have presented three examples where 

neural networks have helped discover 

interesting new examples in mathematics.

These are difficult problems, and on no 

problem do we find a complete solution. 

However, we do find several new 

examples and counter-examples.

These techniques are very flexible.

Let’s try them on more problems!



Thank you
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