





The icosahedron throughout the ages

Kepler's Poincaré’s homology sphere, which led
Mysterium Cosmographicum to the Poincaré conjecture (1904), solved
(1596). by Perelman (2002).

Plato’s Timaeus (c. 360 B.C)
Euclid’s Elements (c. 300 B.C)
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“The methods for coming up with 4usé{ffu_l‘éxamp_l_§s_jn
mathematics. . . are even less clear than the methods for
proving mathematical statements.” — Gil Kalai.



On the search for examples R 5 Gokane vaas e g

Alongside the search for a proof, the search for interesting ‘ (& ’
examples is an important part of the mathematical process. BSOSO v

AN 6'9;
Sometimes one example can give rise to an entire field g p i) T KR Ny
(e.g. the Mandelbrot set, the KdV equation,...). \‘ ‘*’ A(}‘ :

The absence of general methods to find examples is often A “ ‘; (&
a blind spot in many current “Al for math” initiatives. v o B8 : yehe

Interesting examples are often surprising and hard to find. 7 N
Neural networks detect general statistical patterns, so it is a avary : ar o

priori surprising that they can be helpful. X " "t’ ‘9‘\‘;



Plan of talk

- A story about simple groups
- Constructions in combinatorics using transformers
- Finding interesting polytopes using transformers

- Attempting to attack the Jones unknot problem with a neural network.



Finite simple groups and computers
A historical example of human computer interaction



Finite simple groups

The building blocks of finite symmetry.
“Simple groups are to (symmetry) groups, as primes are to whole numbers.”

Example: There are 60 rotational symmetries of the icosahedron, and these
provide a simple group.



Finite simple groups

The building blocks of finite symmetry.

1832-1962: Galois, Jordan, Brauer, Chevalley, Steinberg, Thompson, ...

“most finite simple groups are close relatives of continuous symmetry”.

Algebraists in the audience will know that we have names for them:
Z/PZL, Ay, PGLy(F,), ..., Sz(2%™*1), ..., Eg(F,).

1861, 1873: Mathieu discovered 5 “sporadic” groups of sizes
7920, 95040, 443520, 10200960 and 244823040.

Are there any others? Until 1963 this was the full list.



Zvonimir Janko

- Moved to Canberra in the early 1960s as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration
could not occur, he became convinced that it could.

0100000 (-8 2 -1 =1 =8 ~1 —3
001 0O0TO0O0O0 -2 1 1 3 1 38 3
0001000 -1 -1 ~8 -1 —8 —~83 2
A={0 000100, B={-1 -3 -1 -3 -3 2 -1}
000 O0OT1O0 —8 ~1 ~8 8 8 ~1 -1
000 0O0O°1 1 8 8§ -2 1 1 B8
1 0000 0 O] | 3 38 -2 1 1 3 1]

(7 x 7 matrices with coefficients in Z/117Z))



Zvonimir Janko
- Moved to Canberra in the early 1960s as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration
could not occur, he became convinced that it could.

- Janko assigned two students (Terry Gagen and Martin Ward) the task of verifying that
two matrices generated a group of order 175560. (They worked on an IBM 1620, with
40K of memory.)

By the end of the night—Terry’s memory is that dawn was just
breaking—they had found elements of orders 3, 5, 7, 11, 19 and
with the other information they had, they knew that the new simple

group existed as Janko had suspected.
-- D. Taylor and T. Gagen



Zvonimir Janko
- Moved to Canberra in the early 1960s as a research fellow.

- Whilst attempting to reconstruct an argument by Thompson that a certain configuration
could not occur, he became convinced that it could.

- Janko assigned two students (Terry Gagen and Martin Ward) the task of verifying that
two matrices generated a group of order 175560. (They worked on an IBM 1620, with
40K of memory.)

- The first new sporadic simple group in over a century!



The monster simple group

Over the next decade a further 18 sporadic groups were found.

The largest is the monster simple group. Its order is
808017424794512875886459904961710757005754368000000000
which is roughly the number of elementary particles in Jupiter.

It was conjectured to exist in 1975 by Fischer, and proved to exist by Griess
in 1982. Computation in the monster is a major challenge.

Martin Seysen’s mmgroup package (2022) is a major advance.



The classification of finite simple groups

It is now generally agreed that all finite simple groups are known. They
consist of the known families, together with the 26 sporadic groups,
including the Mathieu, Janko and monster simple groups.

The road to their discovery combined human ingenuity with computation.
Would we have the classification today without computers?

The monster resisted computation for nearly forty years.

For one sporadic simple group (the O’'Nan simple group) we have no
existence proof which doesn’t involve computers!



Zvonimir Janko

The discovery was a miracle?

I was lucky. You can discover something great only if you are critical of some works of
the greatest mathematicians. If they make a mistake, a mistake that of one of the greatest
mathematicians of the time, what is the probability of one in a billion, that you do not have

a lot of possibilities. However, this happened.

--- from an interview with Janko by Pero Zelenika.



disks. The number of seconds in a year is a little more than 3 X lO7 . It is

plausible to imagine that representatives for the orbits of K X K acting on the set
of formal group elements can be found and processed at an average rate of at least 10
per second. These rough calculations indicate that the construction of the monster is
technically feasible but not yet economically justifiable. I doubt that anyone would
argue that the existence or nonexistence of the monster is of such Importance to the
mathematical community that it warrants devoting the resources of a major computer
center for the better part of a year to settle the matter. However, it should be
possible to refine the techniques sufficiently so that the question can be answered at

a price which can be justified.

-- From Sims, A method of constructing a group from a subgroup, 1978.



Example 1: Extremal combinatorics



What’s the largest subset of an n X n grid without 1sosceles

triangles?
® L L N L
® L
® o
L L
L N
® an /sosceles triangle
®




What’s the largest subset of an n X n grid without 1sosceles

triangles?
® o0 o0 ® - A 2d variant of a classic problem in number
o ® theory and additive combinatorics (“progression
® ® free subsets”, Green—Tao theorem).
- Little is known about optimal solutions.
oo L - Hard to produce examples which are
close to extremal.
L N L N
- Highly addictive problem!
° °
] °



Learning from good solutions

We generate many examples by local
search (randomly adding points, without
creating isosceles triangles).

We take top 10%.
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Each construction gives token sequence.

These are used to train a GPT-2 style
transformer. We then sample from the
transformer to produce new examples.

Can lterate!

A tiny percentage of samples do better
than the training set under local search.
Amazingly, one often arrives at a near
optimal solution.




loss/test/0, loss/test/1, loss/test/10, loss/test/11, loss/test/1....ss/ zero score/improved

— 140_2025-06-27-11-56-36 — 140_2025-06-27-08-11-51 = 140_2025-06-27-08-11-17 — 140_2025-06-27-09-11-06 = 140_2025-06-27-09-10-52
= 140_2025-06-27-11-56-36 loss/test/0 == 140_2025-06-27-11-56: 40202506 21.09.09-21 = 140. 2025 06-26.08-30-08

=- 140_2025-06-27-11-56-36 loss/test/11 =+ 140_2025-06-27-11-56

== 140_2025-06-27-11-56-36 loss/test/14 = 140_2025-06-27-11-560.00004

== 140_2025-06-27-11-56-36 loss/test/17 =— 140_2025-06-27-11-56 Fraction of four-leaf
clover found 0.001%!
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Transformers as generators

This technique generates best known
solutions to several problems in extremal
combinatorics.

Recent applications of Ramos and Sun to
conjectures in graph theory.

Charton, Ellenberg, Wagner, W.
PatternBoost: Constructions in Mathematics
with a Little Help from Al
https://arxiv.org/abs/2411.00566
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Transformers as generators
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This technique works well on some problems
and struggles on others. We are able ot find
the the best known solutions to several
problems in extremal combinatorics.

.

We are also able to disprove a 30-year old
conjecture of Niali Graham about the graph of
the hypercube:

What is the smallest subgraph of the
hypercube which still has diameter n?

81 edges vs. conjectured 82!



Linear programming and Hirsch conjecture
Neural networks guiding search on a hard problem



Linear programming

- A core problem in optimization.

- Used > 10 million times a day.




Linear programming

A core problem in optimization.

- Used > 10 million times a day.

- The simplex method is extremely efficient at
solving it in practice, but we don’t know why.

- Hirsch problem: How efficiently can we navigate
the vertices of a polytope, if we are only allowed
to traverse edges?




The width of polytopes

Hirsch conjecture (1957): The vertex-edge graph of any
polytope with n facets in dimension d has diameter at most n-d. <

Santos (2012): There exists a 43-dimensional polytope with 86 ~
facets of diameter at least 44 > 43 = 86 — 43.
Thus, the Hirsch conjecture is false!

Santos reduced this problem to an extremely difficult problem in
5 dimensions. Very few other examples known. No examples . 2
which don’t use Santos’ 5d trick are known. diawmeler =

= #Races — dimension



The width of polytopes

Hirsch conjecture (1957): The vertex-edge graph of any
polytope with n facets in dimension d has diameter at most n-d.

Santos (2012): There exists a 43-dimensional polytope with 86
facets of diameter 44 > 43 = 86 — 43.
Thus, the Hirsch conjecture is false!

Davies, Gupta, Racaniere, Swirszcz, Wagner, Weber, W.:
“Hopper” algorithm using transformer neural network.
Millions of new counter-examples + smallest known
counterexample (19 dimensional).




Hopper algorithm

Build up polytope by adding point after point:



Hopper algorithm

Build up polytope by adding point after point:

Where to add new point?

20 (generic) points in 4 dimensions
determine
y . 22 950 110 195 021

- possible regions!



Hopper algorithm
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- Start by random sampling. Remember which hyperplanes were involved.

- Transformer neural network tries to predict hyperplanes which will be
involved in promising polytopes (with respect to several heuristics).

- Eventually, a tiny fraction (~0.001%) of searches yield a counter-example.



Example 2: Jones unknot conjecture



Does the Jones polynomial detect the unknot?

Knot L (oriented) > V, €Z[q,q"'] (Jones polynomial)

\ (MADE uP VALUVE!)



Does the Jones polynomial detect the unknot?

Joint work with Charton, Narayanan and Yacobi (building on earlier work with Gibson and Yacobi).

We concentrate on matrix problems: do there exist unexpected relations between matrices. E.g.

—q 1 0 l—q —q % g
A=10 1 0 and B=|1-¢* —q¢! 0
0 1 —g1 1 —qg 1t 0

Appears to be extremely difficult problem. In [CNWY], several new (non-Al) ideas introduced, which
allow us to recover all known relations, and many new ones.

However, we don'’t (yet) find any previously unknown case of non-faithfulness.

The focus here is an interesting part of this work where we use neural networks.



Thought experiment

Imagine you are looking for a rare flower.

After several days searching you find nothing.
However, you have learnt a lot of other things.
Can these other things be useful in some way?

Areas which seem unusual might be more likely to contain rare
species, and in particular the flower you are after.

You might want to concentrate your search on areas of
“maximum surprise”. That is, areas where your ability to predict
your environment is low.




Thought experiment in practice

We are looking for a rare knot / braid (a needle in the haystack).

We train a neural network to predict an unrelated quantity (“right
descent set of rightmost Garside factor”) on which the neural
network can achieve good accuracy.

Neural network achieves good accuracy on this problem.
“Descent set confusion™ [* norm between prediction and reality.
Use descent set confusion as a score function,

i.e. braids with high descent set confusion

(i.e. unexpected for neural network)
are more likely to be investigated.

braid closur

(knot)




Thought experiment in practice

To our delight, this actually works!

On the right we see the results on a toy example.
Descent set confusion dramatically improves the O
probablllty Of Successful Search Without neural network, success rate 15%

For experts: Here neural network is functioning like a
value network in reinforcement learning.

With neural network, success rate 29/39 = 740/0
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| have presented three examples where a(‘x‘; ‘K’:&‘&

neural networks have helped discover S
interesting new examples in mathematics. - (o‘A:‘r

These are difficult problems, and on no £ St BB0 1 L BAAEE vi ‘g
problem do we find a complete solution. = 2T B (3; Bo' -
However, we do find several new 4 Pg AN Q’(&‘q
examples and counter-examples. D B “'Vg;( an R

These techniques are very flexible. Lo \‘; " v‘g(&,‘g
Let’s try them on more problems! e &7 o o v w gl g
i ; Koty KaiE %
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