Parity sheaves and the decomposition theorem

Ruhr-Universität Bochum

Thursday Problem Sheet

- 1. Let X_{λ} be smooth and $\mathcal{L}, \mathcal{L}'$ be local systems on X_{λ} .
 - a) Show that one has an isomorphism

$$\mathcal{H}om(\mathcal{L}, \mathcal{L}') \cong \mathcal{L}^{\vee} \otimes \mathcal{L}'.$$

b) Take global sections to deduce that one has

$$\operatorname{Hom}^{i}(\mathcal{L}, \mathcal{L}') = H^{i}(X_{\lambda}, \mathcal{L}^{\vee} \otimes \mathcal{L}').$$

c) Deduce that condition (P) in lectures is equivalent to

$$H^{\text{odd}}(X_{\lambda}, \mathcal{L}) = 0$$
 for all $\mathcal{L} \in \text{Loc}(X_{\lambda})$ (P')

- d) Assume that $\pi_1(X_\lambda)$ is finite. Show that (P') is equivalent to (P''): $Loc(X_\lambda)$ is semi-simple and $H^{\text{odd}}(U) = 0$ where U denotes the universal cover of X_λ .
- **2.** Assume that X_{λ} satisfies condition (P) from lectures. Assume that $\mathcal{F} \in D_c^b(X_{\lambda})$ is such that $\mathcal{H}^i(\mathcal{F}) \in \text{Loc}(X_{\lambda})$ for all $i \in \mathbb{Z}$ and $\mathcal{H}^{\text{odd}}(\mathcal{F}) = 0$ for odd i. Show that one has an isomorphism

$$\mathcal{F} \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{H}^i(\mathcal{F})[-i].$$

Discuss the canonicity of this decomposition. For example, can you give a condition on $H^*(X_{\lambda}, \mathcal{L})$ for this decomposition to be canonical?

- **3.** Suppose that the parity sheaf $\mathcal{E}(\lambda, \mathcal{L})$ exists. Show that $\mathbb{D}\mathcal{E}(\lambda, \mathcal{L}) \cong \mathcal{E}(\lambda, \mathcal{L}^{\vee})$.
- **4.** Let $G = GL_3$, $\mathfrak{g} = \mathfrak{gl}_3(\mathbb{C})$ and $\mathcal{N} \subset \mathfrak{g}$ be the nilpotent cone. Calculate the stalks of the parity sheaves on \mathcal{N} with coefficients in a field of characteristic 2 and 3. (*Hint:* Consider the resolution $\mathcal{O}_{\min} \to \overline{\mathcal{O}_{\min}}$ given in lectures. Identify \mathcal{O}_{\min} with $T^*\mathbb{P}^2$, and $\mathcal{O}_{\min} \to \overline{\mathcal{O}_{\min}}$ with the contraction of the zero section. Hence calculate the stalks of $\mathcal{E}(\overline{\mathcal{O}_{\min}})$. Now use the decomposition of $\pi_*\underline{k}_{\widetilde{\mathcal{N}}}$ given in today's lecture.)