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26 Geordie Williamson

v —pl| > {ls(v) = pll-

Because Wy is discrete, there are finitely many points in the Wy orbit of v which are
of distance at most ||v — p}| from p. Hence, using reflections from Ws we can keep
reducing the distance from p to v until this is no longer possible, i.e. until v € A.

Lemma 2.2. W =W, i.e. W is generated by S.

Proof. Because W is generated by the reflections it contains, it is enough to show
that any reflection in W belongs to Ws. To this end, fix @ € & and let r denote the
corresponding affine reflection. Choose an alcove A € & such that F:=AN« is of
dimension one less than V. By the previous lemma, there is an element w € Wy such
that wA = A. Let s € § be the reflection in the wall wF C wA = A. Then

wlsw=r.
(Indeed, the left hand side is a reflection which fixes F and hence «, and hence must
be r.)

2.3 Expressions and strolls

Fix an affine reflection group W acting on V, together with a choice of fundamental
alcove A as above. Let S denote the set of reflections in the walls of A. An expression
for x is a word x = (s1,52,...,5;) in S such that x = 5,55.... sy The length £(x) of an
expression is its length as a word. An expression for x is reduced if it is of minimal
length amongst all possible expressions for x. The length £(x) is the length of a
reduced expression.

A stroll is a sequence A := (Ag,Ay,...,A;) of elements of & such that Ag = A
and A;_; and A; share a codimension 1 face F; for all 1 <i <k, We think of a stroll
as a path in V beginning in A and only passing through codimension 1 parts of the
hyperplane arrangement @ (see the examples below). The length £(A) is the number
of hyperplanes crossed by the path (i.e. if A is as above then £(A) = k). A stroll is
reduced if F; and Fj are never contained in the same hyperplane for i # j, i.e. if our
stroll “never crosses the same reflecting hyperplane twice”.

Example 2.2. Two strolls ending in the same element; one is reduced, one is not:
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Al AL,

Remark 2.2. Starting in §3.3.5, we will redefine a stroll so that it also allows A; =
A; 1. Thatis, a stroll is like a walk from alcove to alcove, where one might pause to
admire the scenery. For the rest of this chapter, however, A; £ A;_1. '

An expression x = (s1,52,...,5,) determines a stroll A(x) via
Alx) = (Ao =A,A1 =514,A) =514, ., Ay =5152...A).

(Obviously A and sA meet in a codimension 1 face, and hence so do x4 and xsA
for any x € W.) The following proposition tells us that (reduced) expressions and
(reduced) strolls are essentially the same thing:
{2_prop:length}

Proposition 2.1. An expression x for x € W is reduced if and only if the correspond-
ing stroll A(x) is reduced. Moreover, we have
Lx)=#{ac @| aseparates A° and xA°Y.

Example 2.3. The geometric meaning of £(x):

xAL

Proof. Let us temporarily define
£(x) :=#{a € ®| o separates A® and xA"}.

We will argue by induction on £(x) that £(x) = ¢'(x) and that any reduced exprcssion
for x yields a reduced stroll. Let x = (s,...,s;) denote a reduced expression “or x
and let y = (s1,...,8k—1). Then y is a reduced expression for y = sy...5;,_( (an

expression of length < k — 1 for y would yield an expression of length < k for x,
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contradicting £(x) = k). Thus we can apply induction to conclude that £(y) = ¢(y)
and that A(y) crosses k— 1 distinct hyperplanes. Now consider A(x). Either £(x) =

£'(x) or the hyperplane « crossed from yA® to xA® has already been crossed in A »):

=

Let A;_; and A; with i < k be two alcoves where this hyperplane is crossed earlier.
Then (51,...,8i—1,5i+1,.--,Sk—1 ) is an expression for x which is shorter than k. The
corresponding stroll is obtained by reflecting the stroll between { and k— 1 in the
hyperplane o:

This contradicts the fact that £(x) = k. Hence £(x) = £'(x) and we are done.

Corollary 2.1. xA = A if and only if x = id.

Proof. If xA = A then x is of length zero in the generators, and hence x = id.
Combining this result with Lemma 2.1 yields:

Corollary 2.2. A is a fundamental d0n‘1ain for the W-action on V.,

In particular the map x > xA is a bijection. We can use this bijection to identify
W and &/. This is particularly useful as it allows us to deduce properties of W via
the geometry of V and its decomposition into the sets 7.

Exercise 2.3. Modify the proof of Proposition 2.1 to prove the Exchange Condition
and the Deletion Condition for W (see §1.2.3).

2.4 The Coxeter presentation

Suppose that ¢ and 8 belong to @4 (i.e. @ and B constitute walls of A).
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Lemma 2.3. If a and 3 intersect, then they do so at an angle < 7t/2. Moreover, this
angle is of the form 1t /m for some m € Z,.

Proof. Suppose for contradiction that ¢ and 3 intersect at an angle > n/2. Then
reflecting f8 in the hyperplane o would yield a hyperplane in the interior of A,
which is a contradiction:

(B)

s

AO

To see the second claim is a piece of cake (by properness, the cake is cut into finitely
many pieces):

B

AO

If s and ¢ denote the reflections in the hyperplanes o, § € P, then we define

m (of the previous lemma)  if o and 8 meet,
My = .
oo if @ and B do not meet.

The composition of two reflections in distinct, parallel hyperplanes is a non-trivial
translation. Meanwhile, the composition of two reflections in hyperplanes meeting
at an angle of 7/m is a rotation through 27 /m. Hence:

Lemma 2.4, For s,t as above, the order of st € W is my.

We have established the easy part (i.e. that the relations are satisfied) of the fol-

lowing fundamental theorem:
{2_thm:Coxeter}
Theorem 2.1. W admits the following “Coxeter” presentation.

W = (scS|s*=idforall s € S,(st)™ = id for all distinct s,t € S).
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