Fautastic reference: Iwahori-Matsumolo, Publ. IHES, 1965.

Assume most our root system is irreducible. A. \Leftrightarrow A. \Leftrightarrow A. Weight lattice: $\mathcal{X} = \{ A \in \mathcal{Y}^* \mid \langle A, \kappa' \rangle \in \mathbb{Z} \mid \forall \alpha \}$.

For $x \in \overline{\Phi}$ have reflection $S_{\alpha}(N) := N - \langle \alpha^{\vee}, N \rangle \times .$ Gr $A = \emptyset$ Remark: We can and do equip b^{*} with a Euclidean when product s.t. S_{α} is orthogonal. $W_{\underline{\Phi}} = \langle S_{\alpha} \mid \alpha \in \overline{\Phi} \rangle = \langle S_{\alpha} \mid \alpha \in \Sigma \rangle .$ "huite Weyl groups"

 $W_e = W_{\xi} \times \mathcal{X}$ "extended alline Given $A \in \mathcal{X}$ with t_A for branslation by A. Weyl graps"

For $\alpha \in \Phi_+$, $m \in \mathbb{Z}$ consider $H_{\alpha,m} := \{ \Delta \mid (\Delta, \alpha^{\vee}) = m \}$.

Sx, m (1) := 1 - (x, 1) x + m 20 x.

Note that so, is a reflection and lixes Ho, in.

This characterises Sa, m uniquely.

Also Sor, m = tma o Sox = Sox o tma . (*)

Lemma: W is generated by Sa, m.

Proof: Clear hom (*). because 20 is generated by

Lunna: W is a normal subgroup of We.

Proof: Clearly to (Harm) = Harma (1, m). Hence

ta sx, m ta = sx, m+ (x, a).

 $\partial \mathcal{C} = \text{Set of relieding hyperplanes } H_{\sigma,m}, \propto \in \Phi, m \in \mathbb{Z}$.

We, Wack on 76 60.

~> We, W aut on 1/8 \ HeTB

Connected components are called alcores.

while the coroot

 $A_0 = \{ N | \langle N, \kappa^{V} \rangle > 0 \ \forall \alpha \in \Sigma, \langle N, \langle \widetilde{\alpha}_{ab} \rangle^{V} \rangle < 1 \}$ lundamental alcove.

Example:

Suppose some Hx, in intersects A. We can hind x+ B= 2. Choose vo in Mis uitersection.

Now:

 $M \leq \langle \alpha^{\nu}, \nu \rangle + \langle \beta^{\nu}, \nu \rangle = \langle \alpha^{\nu}, \nu \rangle < 1$

=> contradiction.

because or, or are sums of sniple rooks and $v \in A_0$. let S:= {Sα | α ∈ Δ} U {@S α short, 1} be the Rellutions in the walls of its.

Clauin:

DOG Q Lindow Sufak Cloubay . Con A Calling on Cy A. -> b*/ (s>.

If ve its men we're done, otherwise Choose VE &*. a higgeletane tepacition whose relluling exists mere

hyperplane seperales A. and

If pg devotes a point in me interior of As Men

11 s(v)-311 < 11v-311.

The set of Worloods of v is discrete,

hence 11 w·(v) -8 11 obtains a minimum.

This point must lie in do.

Now we'red done.

 $W = \langle S \rangle$

NOW PRINTED NOTES.

ye gely spigglest braughtively suggest; Courses of Disquelling, if Whites

· Two different interpretations of length builtion, simply mausitire.

$$||v - \rho|| > ||s(v) - \rho||.$$

Because W_S is discrete, there are finitely many points in the W_S orbit of ν which are of distance at most $||\nu - \rho||$ from ρ . Hence, using reflections from W_S we can keep reducing the distance from ρ to ν until this is no longer possible, i.e. until $\nu \in \Delta$.

Lemma 2.2. $W = W_S$, i.e. W is generated by S.

Proof. Because W is generated by the reflections it contains, it is enough to show that any reflection in W belongs to W_S . To this end, fix $\alpha \in \Phi$ and let r denote the corresponding affine reflection. Choose an alcove $A \in \mathscr{A}$ such that $F := A \cap \alpha$ is of dimension one less than V. By the previous lemma, there is an element $w \in W_S$ such that $wA = \Delta$. Let $s \in S$ be the reflection in the wall $wF \subset wA = \Delta$. Then

$$w^{-1}sw = r$$
.

(Indeed, the left hand side is a reflection which fixes F and hence α , and hence must be r.)

2.3 Expressions and strolls

Fix an affine reflection group W acting on V, together with a choice of fundamental alcove Δ as above. Let S denote the set of reflections in the walls of Δ . An expression for x is a word $\underline{x} = (s_1, s_2, \ldots, s_m)$ in S such that $x = s_1 s_2 \ldots s_m$. The length $\ell(\underline{x})$ of an expression is its length as a word. An expression for x is reduced if it is of minimal length amongst all possible expressions for x. The length $\ell(x)$ is the length of a reduced expression.

A stroll is a sequence $\underline{A} := (A_0, A_1, \dots, A_k)$ of elements of $\overline{\mathscr{A}}$ such that $A_0 = \Delta$ and A_{i-1} and A_i share a codimension 1 face F_i for all $1 \le i \le k$. We think of a stroll as a path in V beginning in Δ and only passing through codimension 1 parts of the hyperplane arrangement Φ (see the examples below). The $length \ \ell(\underline{A})$ is the number of hyperplanes crossed by the path (i.e. if \underline{A} is as above then $\ell(\underline{A}) = k$). A stroll is reduced if F_i and F_j are never contained in the same hyperplane for $i \ne j$, i.e. if our stroll "never crosses the same reflecting hyperplane twice".

Example 2.2. Two strolls ending in the same element; one is reduced, one is not:

Remark 2.2. Starting in §3.3.5, we will redefine a stroll so that it also allows $A_i = A_{i-1}$. That is, a stroll is like a walk from alcove to alcove, where one might pause to admire the scenery. For the rest of this chapter, however, $A_i \neq A_{i-1}$.

An expression $\underline{x} = (s_1, s_2, \dots, s_m)$ determines a stroll $\underline{A}(\underline{x})$ via

$$\underline{A}(\underline{x}) := (A_0 = \Delta, A_1 = s_1 \Delta, A_2 = s_1 s_2 \Delta, \dots, A_k = s_1 s_2 \dots s_k \Delta).$$

(Obviously Δ and $s\Delta$ meet in a codimension 1 face, and hence so do $s\Delta$ and $s\Delta$ for any $s\Delta$ for any $s\Delta$ The following proposition tells us that (reduced) expressions and (reduced) strolls are essentially the same thing:

{2_prop:length}

Proposition 2.1. An expression \underline{x} for $x \in W$ is reduced if and only if the corresponding stroll $\underline{A}(\underline{x})$ is reduced. Moreover, we have

$$\ell(x) = \#\{\alpha \in \Phi \mid \alpha \text{ separates } \Delta^0 \text{ and } x\Delta^0\}.$$

Example 2.3. The geometric meaning of $\ell(x)$:

Proof. Let us temporarily define

$$\ell'(x) := \#\{\alpha \in \Phi \mid \alpha \text{ separates } \Delta^0 \text{ and } x\Delta^0\}.$$

We will argue by induction on $\ell(x)$ that $\ell(x) = \ell'(x)$ and that any reduced expression for x yields a reduced stroll. Let $\underline{x} = (s_1, \dots, s_k)$ denote a reduced expression for x and let $\underline{y} = (s_1, \dots, s_{k-1})$. Then \underline{y} is a reduced expression for $y = s_1 \dots s_{k-1}$ (an expression of length < k - 1 for \underline{y} would yield an expression of length < k for x,

contradicting $\ell(x) = k$). Thus we can apply induction to conclude that $\ell(y) = \ell'(y)$ and that $\underline{A}(\underline{y})$ crosses k-1 distinct hyperplanes. Now consider $\underline{A}(\underline{x})$. Either $\ell(x) = \ell'(x)$ or the hyperplane α crossed from $y\Delta^0$ to $x\Delta^0$ has already been crossed in $\underline{A}(y)$:

Let A_{i-1} and A_i with i < k be two alcoves where this hyperplane is crossed earlier. Then $(s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{k-1})$ is an expression for x which is shorter than k. The corresponding stroll is obtained by reflecting the stroll between i and k-1 in the hyperplane α :

This contradicts the fact that $\ell(x) = k$. Hence $\ell(x) = \ell'(x)$ and we are done.

Corollary 2.1. $x\Delta = \Delta$ if and only if x = id.

Proof. If $x\Delta = \Delta$ then x is of length zero in the generators, and hence x = id.

Combining this result with Lemma 2.1 yields:

Corollary 2.2. Δ is a fundamental domain for the W-action on V.

In particular the map $x \mapsto x\Delta$ is a bijection. We can use this bijection to identify W and $\overline{\mathscr{A}}$. This is particularly useful as it allows us to deduce properties of W via the geometry of V and its decomposition into the sets $\overline{\mathscr{A}}$.

Exercise 2.3. Modify the proof of Proposition 2.1 to prove the Exchange Condition and the Deletion Condition for W (see $\S1.2.3$).

2.4 The Coxeter presentation

Suppose that α and β belong to Φ_{Δ} (i.e. α and β constitute walls of Δ).

Lemma 2.3. If α and β intersect, then they do so at an angle $\leq \pi/2$. Moreover, this angle is of the form π/m for some $m \in \mathbb{Z}_{\geq 0}$.

Proof. Suppose for contradiction that α and β intersect at an angle $> \pi/2$. Then reflecting β in the hyperplane α would yield a hyperplane in the interior of Δ , which is a contradiction:

To see the second claim is a piece of cake (by properness, the cake is cut into finitely many pieces):

If s and t denote the reflections in the hyperplanes $\alpha, \beta \in \Phi_{\Delta}$ then we define

$$m_{st} := egin{cases} m ext{ (of the previous lemma)} & ext{if } lpha ext{ and } eta ext{ meet,} \ & ext{if } lpha ext{ and } eta ext{ do not meet.} \end{cases}$$

The composition of two reflections in distinct, parallel hyperplanes is a non-trivial translation. Meanwhile, the composition of two reflections in hyperplanes meeting at an angle of π/m is a rotation through $2\pi/m$. Hence:

Lemma 2.4. For s,t as above, the order of $st \in W$ is m_{st} .

We have established the easy part (i.e. that the relations are satisfied) of the following fundamental theorem:

Theorem 2.1. W admits the following "Coxeter" presentation:

$$W = \langle s \in S \mid s^2 = \text{id } for \ all \ s \in S, (st)^{m_{st}} = \text{id } for \ all \ distinct } s, t \in S \rangle.$$

Then here exists & 1 \(\) \(

(4)

Proof:

Delivition of le extends to West:

l: Wext -> 730

x = # {HE Je | H separates of and x A o }.

 $\Omega := \text{"length zero elements"} = \ell'(0) = \{x \mid x d_0 = d_0\}.$

Vertices et a Ao are {0, 81, 92,..., Brank }

and Ω \subset Sym ({0,0,,..., oranh}) hence it is

a limite group.

SIG walls of lundamental alcore

→ St G alhie Dymlin diagram.

Jemma:

Proof: (1) Row lettous loom simple transitivity

- 2) W normal in West explained above.
- 3 Wext = (Q) W): take x & Wext. Because W is Wansitire on alcores, 2 yEW s.t. oxy preserves do.

Hence 25' & R.

 \Box

Some examples of Q:

& s.t & presence A.

(2) A2

Sasoft & preserves sto.

B2: S= 2/22,

G(= Q= {1)

$$B = \langle T_{x}, \not \mid x \in W \mid T_{x}T_{y} = T_{xy} \text{ if } \ell(x + y) = \ell(x) + \ell(y) \rangle$$

$$B_{e} = \langle T_{x}, x \in W_{ext} \mid \dots \rangle.$$

Seel a presentation for B, Be ahin to the lattice presentation of W, We.

For
$$\lambda \in \mathcal{X}$$
 write $\lambda = \mathcal{X} - \mathcal{M}$, $\mathcal{X}, \mathcal{M} \in \mathcal{X}_{+}$ (dominant).

Proof: # of hyperplanes $H_{or,m}$ for $m \in \mathbb{Z}$ separating Eg and A + Eg.

For
$$\Delta \in \mathfrak{I}_{+}$$
,

 $\alpha \in \mathfrak{I}_{+}$
 $\langle \Delta, \omega^{*} \rangle$.

Hence:
$$\ell(\ell_{\Delta}) = \sum_{\alpha \in \Phi_{+}} \langle \gamma, \omega \gamma \rangle = 2 \langle \gamma, g^{\alpha} \rangle.$$

In pathicular, if λ , $\chi \in \mathcal{X}_{+}$, $\xi = T_{\xi \lambda} T_{\xi \mu} = T_{\xi \lambda + \mu \nu}$ because

$$\ell(t_{\lambda}t_{\mu}) = \ell(t_{\lambda}t_{\mu})$$

$$= 2(\lambda t_{\mu}, s^{\nu})$$

$$= 6 \cdot \ell(t_{\lambda}) + \ell(t_{\mu}).$$

Hence: 1 C> Be via 2 - Tex.

For
$$\Lambda \in \mathcal{K}$$
 write $\Lambda = \Lambda' - \rho \Lambda''$, $\Lambda', \Lambda'' \in \mathcal{K}_+$.

Ts seSp

On SEX

TsTe ... = TeTs ...

mst mst

(huite braid relations)

On On = On+m

(lattice part)

ON OTS = TOOR

if $\langle \Lambda, \alpha'_{s} \rangle = 0$.

 $\mathcal{O}_{\lambda} T_{s}^{-1} = T_{s} \mathcal{O}_{\lambda-\alpha} \quad \text{if} \quad \langle \lambda, \alpha, \rangle = 1.$