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Phase transitions in equilibrium and nonequilibrium systems play a major role in the natural
sciences. In dynamical networks, phase transitions organize qualitative changes in the collective
behavior of coupled dynamical units. Adaptive dynamical networks feature a connectivity structure
that changes over time, co-evolving with the nodes’ dynamical state. In this Letter, we show
the emergence of two distinct first-order nonequilibrium phase transitions in a finite size adaptive
network of heterogeneous phase oscillators. Depending on the nature of defects in the internal
frequency distribution, we observe either an abrupt single-step transition to full synchronization or
a more gradual multi-step transition. This observation has a striking resemblance to heterogeneous
nucleation. We develop a mean-field approach to study the interplay between adaptivity and nodal
heterogeneity and describe the dynamics of multicluster states and their role in determining the
character of the phase transition. Our work provides a theoretical framework for studying the
interplay between adaptivity and nodal heterogeneity.

Phase transitions play an important role in the natural
sciences [1]. Complex dynamical networks [2, 3] exhibit
a plethora of nonequilibrium phase transitions organiz-
ing their collective dynamics in response to variations
in control parameters such as interaction strength or
noise [4, 5]. In particular, transitions between coherence
and incoherence have attracted significant attention in
static [6] and temporally evolving complex networks [7].
The Kuramoto model [8] has served as a testbed to study
phase transitions in networks of coupled oscillators. It ex-
hibits either first or second-order phase transitions from
incoherence to full synchronization, depending on the
natural frequency distribution [8–13]. Similarly, the net-
work structure [14] and the weight distribution [15] can
have strong effects on the nature of the synchronization
transitions leading to first-order transitions and hystere-
sis.

To better describe real-world phenomena, the origi-
nal Kuramoto model has been extended and modified.
Beyond the classical Kuramoto model, generalizations
to static and time-evolving networks have been devel-
oped [7, 16–21]. The inclusion of additional dynamical
degrees of freedom, e.g. to describe power grids [22–
26] in terms of the Kuramoto model with inertia, has
introduced much richer synchronization transitions with
regimes of coexisting cluster states. Recently, adaptive
dynamical network models were introduced which are ca-
pable of describing chemical [27, 28], epidemic [29], bio-
logical [30], neurological [31–33], transport [34], and so-
cial systems [35, 36]. Adaptive dynamical networks are
characterized by the coevolution of network structure and
functionality. A paradigmatic example of adaptively cou-
pled phase oscillators has recently attracted much atten-

tion [37–42], and has shown promise in predicting and de-
scribing phenomena in more realistic and complex physi-
cal systems such as neuronal and biological systems [43–
46], as well as power grid models [47]. However, the type
and nature of phase transition in this important class of
models remains unclear.

This work contributes to understanding nonequilib-
rium phase transitions in adaptive networks and their
characterisation. We study phase transitions in a finite-
size Kuramoto model equipped with adaptive coupling
weights. The natural frequencies are considered to be
uniformly distributed, i.e., all possible frequencies are
equally probable, and therefore disorders induced by fi-
nite size realizations of this distribution have a direct
impact on the synchronization behavior. We find two
qualitatively distinct types of first-order transitions to
synchrony akin to the first-order transition phenomenon
of heterogeneous nucleation [48]. The first, multi-step
type of synchronization transition is characterized by the
nucleation and growth of a dominant cluster, similar to
Ostwald ripening in equilibrium and nonequilibrium sys-
tems [49], until the system reaches synchrony. The sec-
ond, single-step transition type features multiple stable
synchronization nuclei and the transitions to full syn-
chrony is caused by an abrupt merging of large clusters
of similar size. These two paths to synchrony exhibit a
high degree of multistability. We identify the location of
fluctuations in the realization of the natural frequency
distribution as the cause for the two different scenarios.
Methodologically, we present a framework to reduce high
dimensional adaptive networks to a few mesoscopic vari-
ables and show that a collection of partially synchronized
clusters of approximately equal size is more stable with
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respect to changes in the coupling strength. With this,
we extend the scope of mean-field approaches, which have
been so far used only for static networks, to adaptive net-
works.

We consider the adaptively coupled phase oscillator
model

dφi
dt

= ωi −
σ

N

N∑
j=1

κij sin(φi − φj), (1)

dκij
dt

= −ε (κij + sin(φi − φj + β)) , (2)

for N phase oscillators i = 1, ..., N with phases φi(t) ∈
[0, 2π) coevolving with adaptive coupling weights κij(t).
The natural frequency ωi of the ith oscillator is drawn
randomly from a uniform distribution ωi ∈ [−ω̂, ω̂] [73].
The overall coupling strength is σ, the time-scale separa-
tion between the fast oscillator dynamics and the slower
adaptation of the coupling weights is denoted by ε, and β
is a tuning parameter for the adaptivity function [51, 52].

Coherence can be quantified by the synchronization
index S which measures the fraction of frequency-
synchronized oscillator pairs S := 1

N2

∑N
i,j=1 sij , where

sij = 1 for equal mean phase velocities of the oscilla-

tors i and j, 〈φ̇i〉 = 〈φ̇j〉, and sij = 0 otherwise [74].

Here 〈x〉 = limT→∞
1
T

∫ T0+T

T0
x(t)dt with sufficiently

large transient time T0. For S = 1 the system is fully
frequency-synchronized, whereas for S = 0 the system is
asynchronous.

With increasing coupling strength σ, system (6)–(7)
undergoes a transition from asynchrony to full synchro-
nization, see Fig. 1(a) [75]. The routes to synchrony with
increasing coupling strength σ in Fig. 1(a) follow two
paths of first-order transitions: a more gradual multi-
step (upper, light yellow) and a more abrupt single-step
(lower, dark green) path. In what follows, we describe
these paths and determine the finite size features in the
realization of the natural frequency distribution that lead
to either a multi-step or single-step transition to syn-
chrony.

Figures 1(b) and 1(c) show the multi-step and single-
step transitions, respectively, for two representative re-
alizations of the natural frequencies (displayed as insets)
and 30 different initial conditions of the phases φi(0). De-
pending on initial conditions and natural frequencies the
system can develop a large number of coexisting states.
The multi-step path in Fig. 1(b) exhibits a higher degree
of multistability even for the fixed realization of frequen-
cies and a large number of transitions between coexist-
ing states. Figs. 2(a)–(d) show snapshots of the coupling
matrix corresponding to the multi-step transition. It is
seen that a cluster nucleus emerges and, upon increasing
the coupling strength, entrains more and more oscilla-
tors leading to the fully frequency synchronized state in
Fig. 2(d), similarly as observed in [22]. Depending on
the initial conditions the exact structure of the system’s

FIG. 1. Paths to synchrony for system (6)–(7). (a) Synchro-
nization index S as a function of the coupling strength σ for
100 simulations with N = 50 oscillators. Each run was ini-
tiated with random initial conditions and σ was increased in
steps of ∆σ = 0.01. For further details on the up-sweep pro-
tocol, we refer to [56]. For each run, natural frequencies are
drawn independently from a uniform distribution ωi ∈ [ω̂, ω̂]
with ω̂ = 0.25. The dotted lines indicate jumps in the syn-
chronization index during the transition. The inset shows
realizations of the finite-size frequency distributions for the
multi-step (left) and single-step (right) paths generated from
1000 simulations. (b) and (c): Synchronization index S for
fixed realization of the natural frequencies and 30 different
initial conditions, consistently leading to the multi-step (b)
or single-step transition (c). Insets show the natural frequen-
cies used in the simulations. The circles highlight areas of
higher frequency densities. The synchronization index S is
determined with an averaging time window T = 7 · 103 and
transient time T0 = 3 · 103. Other parameters: β = −0.53π,
ε = 0.01.

state can vary, e.g. the size of the nucleus for different
σ. This gives rise to a multitude of stable states for most
values of σ.

The single-step transition is shown in Fig. 1(c). Re-
gardless of the initial condition, the dynamics follows
very similar paths of the synchronization index. The
phase oscillators organize into a small number of clusters
within each of which all oscillators move with the same
mean phase velocity for small values of σ. Notably, there
is no single cluster at any time that is significantly larger
than the others, in contrast to the multi-step branch and
prior findings for multicluster states [39]. Further, for the
single-step phase transition path an intermediate state
with S ≈ 0.5 emerges, which is stable for a wide range
of coupling strengths σ. The transition to full frequency
synchronization occurs discontinuously at σ ≈ 5.35. The
formation of small initial clusters and the intermediate
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state are shown in Figs. 2(e)–(h). The intermediate state
(g) consists of two almost evenly sized clusters (nuclei)
that are formed simultaneously.

Whether the system undergoes a multi-step or a single-
step transition path is determined by the particular re-
alization of the natural frequency distribution, see the
insets in Fig 1(a). Frequency distributions correspond-
ing to multi-step phase transitions are characterized by a
higher density around the average frequency ω̄ = 0, lead-
ing to an initial cluster with average cluster frequency
close to the overall average frequency of the network. On
the other hand, frequency distributions corresponding
to single-step transitions are characterized by deviations
which are concentrated away from the average frequency
ω = 0. This leads to local clusters emerging at low
coupling strength around those non-zero seeds. These
clusters survive a further increase in coupling strength
entraining further oscillators before for larger coupling
strength collapsing into the fully synchronized state with
mean phase velocity close to 0.

The distinction between these two qualitatively very
different scenarios of phase transitions is hence caused
by finite size induced inhomogeneities of the natural fre-
quency distribution. The fluctuations in the realization
of the natural frequencies dominates the influence of the
choice of initial conditions, see Fig 1(b) and (c). To fur-
ther probe that the choice of transition path is indeed a
finite-size effect, we study equidistant draws from the fre-
quency distribution, to mimic the thermodynamic limit
of infinite network size. In this case the transition path
which is taken by the system is determined instead by
the initial condition of the phases, see [56].

Performing a down-sweep from σ = 6 to σ = 0 for
the given frequency distributions in Fig. 1(b) and (c),
hysteresis and bistability between full and partial cluster
synchrony is observed (see [56] for details).

During the transition to synchrony, oscillators group
into frequency locked clusters. The fluctuations in real-
ization of the natural frequencies determine the shapes
of the emerging cluster states, which in turn govern the
type of the transition. In systems with adaptive cou-
pling weights there are many ways in which an arbi-
trary number of oscillators can form a multicluster struc-
ture [39, 57]. In the following, we study the coexistence of
multicluster states and show that the states with equally
sized clusters are stable for a larger interval in σ than the
states with strongly different cluster sizes.

We develop an approach that reduces the problem of
multicluster states from N +N2 dimensions to 2M −1 +
M2 dimensions, where M is the number of clusters. Our
approach uses the collective coordinate method first in-
troduced in [58]. This method successfully describes the
synchronization of the Kuramoto system for general, in
particular multimodal [59], frequency distributions, with
complex coupling topology [60] or chaotic cluster dynam-
ics. In contrast to other well known reduction meth-

FIG. 2. Coupling matrices for specific values of σ, corre-
sponding to two different types of synchronization transition.
(a)–(d): multi-step, and (e)–(h) single-step transition. The
values of σ are (a) 0.9, (b) 1.05, (c) 1.75, (d) 6.0 and (e) 0.55,
(f) 1.75 (g) 2.75 and (h) 6.0. The snapshots are taken after
104 time units. Other parameters: ω̂ = 0.25, β = −0.53π
and ε = 0.01. Due to the φ→ φ+ π symmetry, κij and −κij
are indistinguishable, therefore the absolute values |κij | are
plotted, see [56].

ods such as Watanabe-Strogatz reduction [61] and Ott-
Antonsen-Ansatz [62], this approach is able to capture
finite-size effects while still reproducing the findings of
mean-field theories in the N →∞ limit for a well chosen
ansatz [63].

Motivated by [59], we consider the following cluster
ansatz:

φi ≈ φ̂µi = ϑµ(̇ωi − Ωµ) + fµ, (3)

κij ≈ κ̂µνij = κµν . (4)

Here, we split up the dynamical description for each
phase oscillator into two coordinates. The coordinates
ϑµ(t) and fµ describe the spread of oscillators within the
µth cluster with relative frequencies (ωi − Ωµ) and the
collective phase of each cluster, respectively. Similarly,
we reduce the coupling weights κij to an inter-cluster
coupling κµν between clusters µ and ν. We assign the
index i of each oscillator to a cluster µ of size Nµ = nµN
and with the set of indices Cµ; Ωµ = N−1µ

∑
i∈Cµ ωi is

the mean natural frequency of cluster µ. This approach
changes the microscopic description of each oscillator to
a mesoscopic description for the clusters with the new
collective coordinates ϑµ, fµ, and κµν [76].

The error of the collective coordinate approxima-
tion (8)–(9) is minimized by ensuring that the error is
orthogonal to the space spanned by the ansatz functions,
see [58, 63]. This Galerkin approximation determines
the equations of motion for each of the collective co-
ordinates. For simplicity, we restrict ourselves here to
the description of two clusters [77]. A common mea-
sure of coherence within a population of phase oscilla-
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FIG. 3. Bifurcation diagram for the adaptive Kuramoto
model (6)–(7) (full system) with N = 1000 oscillators (solid
lines) and the reduced system (13) (dashed lines), showing the
time average (over T = 1000) of the second Kuramoto-Daido
order parameter R2 as a function of the coupling strength σ.
For the full system a two-cluster state is initially prepared
with a fraction of n1 oscillators placed in the first cluster,
and n2 = 1−n1 oscillators in the second cluster at σ = 1, for
the reduced system at σ = 0.5 with values of n1 from 0.5 to
0.95 in steps of ∆n1 = 0.05. Additionally the full system is
simulated for n1 = 1 to visualize hysteresis. The analytical
estimates of upper and lower bounds of two-cluster existence
at σS = 3.152 and σC = 0.460 are marked on the axis. Inset:
oscillator phases φi for the full system vs. the approximation
φ̂µi = ϑµωi of the reduced system for n1 = 0.5 and σ = 2;
colors denote the two clusters. Other parameters: ω̂ = 0.25,
β = −0.53π and ε = 0.01.

tors is provided by the mth Kuramoto-Daido order pa-

rameter Rm (t) = 1
N

∣∣∣∑N
j=1 e

miφj(t)
∣∣∣ [8, 66]. Here, we

need the first moment restricted to a single cluster µ:
rµ ≡ Rm=1,µ (t). In the continuum limit N → ∞ the
resulting mesoscopic dynamics of system (6)–(7) is gov-
erned by

ϑ̇µ = 1 +
σ

vµϑµ

(
cos

(
ϑµnµ

4

)
− rµ

)
× [κµµnµrµ + κµνnνrν cos f ] ,

(5a)

ḟ = Ω12 − σr1r2 (n1κ21 + n2κ12) sin f, (5b)

κ̇µν = − ε [κµν + rµrν sin (fµ − fν + β)] . (5c)

Here, µ, ν ∈ {1, 2} are the indices for the clusters, f =
f1 − f2 is the phase difference of the two clusters, Ω12 =
Ω1−Ω2, vµ = 1

Nµ

∑
i∈Cµ (ωi − Ωµ)

2
is the variance of the

natural frequencies of a cluster. The first Kuramoto order
parameter for a cluster is approximated by rµ = sin z/z
with z = ϑµnµ/4. See [56] for details.

Figure 3 shows a comparison of the high-dimensional
adaptive Kuramoto system (6)–(7) and the reduced sys-
tem (13). We use N = 1000 oscillators with a fixed
realization of natural frequencies. Two-cluster configu-
rations are generated by varying the relative number of
oscillators in the first cluster from n1 = 0.5 to n1 = 0.95

for which we prepare special initial conditions that result
in the desired state. For the reduced system, we proceed
analogously.

Figure 3 shows that the dynamics of the two-cluster
state is captured very well by the collective coordinate
framework. The solid lines (full system) overlap with
the dashed lines (reduced system). The single-step first-
order transition, also seen in Fig. 1(c), is well explained
by the merging of two clusters in the reduced system. In
both systems the multicluster structure ceases to exist
beyond a certain coupling strength σc. The critical val-
ues for the onset of cluster synchronization σc and full
synchrony σs are well approximated by a perturbative
approach for ε � 1 to the reduced system (13). We ob-
tain σc ≈ 0.460 and σs ≈ 3.152, see [56]. In particular,
the analytic result shows that multicluster states exist
only for an intermediate range of σ, which agrees with
the observations in Fig. 1.

In the inset of Fig. 3 the excellent agreement between
the oscillator phases of the full system and the collective
coordinate ansatz (8) is shown for n1 = 0.5.

Fig. 3 shows that two-cluster states in the reduced
system are stable for a much larger interval in σ than
in the full system. This discrepancy may be linked to
the observation that the stability of multicluster states is
mainly determined by intracluster links [67]. Such intra-
cluster effects are not captured by our mean-field ansatz.
However, the reduced system provides important insights
into the existence of partially synchronized clusters from
which the stability can be studied numerically employing
the full system. This is relevant to the two transition sce-
narios observed in Fig. 1: the reduced two-cluster system
withstands full synchronization for larger values of the
coupling strength the more equal the respective cluster
sizes are with a maximum at n1 = n2 = 0.5. Hence a ho-
mogeneous collection of clusters of similar size will remain
stable for a wide range of coupling strengths whereas het-
erogeneous nucleation with a dominant initial cluster will
entrain further oscillators upon increasing the coupling
strength.

In summary, we have shown two qualitatively differ-
ent transitions to synchronization induced by the inter-
play of an adaptive network structure and finite size
inhomogeneities in the natural frequency distributions:
a single-step transition and a multi-step transition. In
the multi-step transition, a single large cluster (nucleus)
forms around an inhomogeneity in the frequency distri-
bution and successively grows until full synchronization is
reached. In contrast, in the single-step synchronization
transition, multiple equally sized clusters (nuclei) form
around multiple inhomogeneities, grow and coexist sta-
bly. Each cluster moves with its mean frequency, which
results in a higher difference of the average phase velocity
between the clusters than between two freely moving os-
cillators. This higher difference inhibits the synchroniza-
tion of the clusters for a significant range in the coupling
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strength during the transition, before full synchroniza-
tion is reached abruptly in a first-order transition.

The described nucleation phenomena are very sim-
ilar to heterogeneous nucleation induced by local im-
purities known, e.g., from cloud formation [68], crys-
tal growth [69] or Ostwald ripening in equilibrium and
nonequilibrium systems [49]. Due to this relation, our
results provide an intriguing bridge between synchroniza-
tion transitions in finite-size dynamical complex networks
and thermodynamic phase transition. Our numerical in-
vestigation has been complemented by a mean-field the-
ory capable of describing multicluster states in the pres-
ence of an arbitrary frequency distribution and adaptive
coupling weights. By this, we contribute to the research
on mean-field models of coupled phase oscillators [62]
where only recently first steps have been undertaken to
include adaptive coupling [70]. Remarkably, our reduced
mean-field model provides an excellent approximation of
the macroscopic as well as the microscopic multicluster
dynamics. The multi-step transition with a continually
changing size of the main cluster (nucleus) and the impor-
tance of the stability of each cluster is only partially cap-
tured by the mean-field approach introduced in this work.
This limitation, however, could be overcome by generaliz-
ing methods on partial synchronization in pure phase os-
cillator systems [63] and systems with inertia [22, 71, 72].

Appendix

A: Numerical schemes

Integration schemes

For the numerical integration of the full Kuramoto sys-
tem with N = 1000 oscillators, we use a procedure that
combines a classical Runge-Kutta scheme for the oscilla-
tor phases with Euler’s method for the coupling weights.
We use a fixed ∆t = 0.01 as the step size. Let ui be the
state vector of our system at time t = i∆t. In order to
calculate ui+1 = ui+k, with k being the vector of change
of our state, we split the calculation into an oscillator kφ
and a coupling kκ part. Since ε� 1, the dynamics of the
coupling is slower than the dynamics of the phases. For
the slow dynamics of the coupling we employ a simple
Euler scheme with

kκ = k̇κ (ui) ∆t.

For the fast oscillator part kφ we use a more accurate

fourth-order Runge-Kutta scheme. Here k̇φ (u) corre-
sponds to the equation of motion (2) of the main text.
Using an Euler step for the coupling significantly speeds
up the computation and allows for the extensive sweeping
protocols over many realisations. This is justified since
the dynamics is slow and the coupling can be assumed to

be constant during the fine-scale Runge-Kutta steps for
the fast oscillator dynamics.

For the numerical integration of the full Kuramoto sys-
tem with N = 50 oscillators, the integration is performed
using a fifth order Runge-Kutta method and the time
step is chosen at every step by estimating the error via
comparison with a Runge-Kutta of fourth order and en-
forcing its smallness.

Parameter sweeping protocols

For the parameter sweeping in Fig. 1 of the main text,
we use different protocols depending on the type of anal-
ysis done. For most parts of our study, we consider sys-
tems of N = 50 adaptively coupled oscillators oscillators.
Large systems with N = 1000 are used to show the ac-
curacy of our mean-field approach for two-cluster states,
however, the sweeping approach has been adjusted as de-
scribed in the subsequent section.

Up-sweep protocol: For systems with N = 50 oscil-
lators, we initiate each simulation with random initial
conditions and natural frequencies at σ = 0. Then we
simulate the system for a total of 104 time units. The
last 7000 time units of those are used to calculate the
synchronization index S, see definition in the main text.
For the calculation of S, we evaluate if the mean phase

velocities
〈
φ̇i

〉
of the oscillators are the same allowing

for a small difference of
〈
φ̇i

〉
−
〈
φ̇j

〉
< 10−3. The to-

tal number of pairings for which this is true divided by
the total number of oscillator pairs N2 determines the
synchronization index S. The final state φi reached af-
ter these 104 time units is used as the initial condition
for the simulation at a value of the increased coupling
strength σ = ∆σ = 0.01. This process repeats during
the up-sweep until σ = 6.

Down-sweep protocol: The down-sweep is performed
in a similar manner, starting from the fully synchronized
state at σ = 6, decreasing σ in steps of ∆σ = −0.01 after
every 104 time units and using the previously calculated
state as the new initial condition. We analyse the down-
sweep until σ = 0.

Parameter sweeping for two-cluster states

The scans through σ shown in Fig. 3 of the main text
for systems with N = 1000 oscillators are achieved as
follows. To make sure the analysis is performed for the
desired two-cluster state with a particular n1, the system
is initiated with oscillators belonging to a cluster being
grouped together and their intracluster coupling maxi-
mized to κµµ = − sinβ, whereas the intercluster coupling
was minimized to κµν = 0. The reduced system uses the
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same initial values for the couplings as well as ϑµ = 0.1
for each cluster, with fµ = 0 or 0.3π respectively.

With the initial state prepared in the desired two-
cluster state the simulation is started at an estimated
value of σ that is close to the border of desynchroniza-
tion. We choose σ0 = 0.5 for the reduced system and
σ0 = 1 for the full system. With this, the protocols de-
scribed above for sweeping through the values of σ are
applied with a step size of ∆σ = 0.01 for the reduced
system and ∆σ = 0.1 for the full system. Due to its re-
duced complexity and the ten times higher resolution in
σ, the reduced system for the collective coordinates only
requires a shorter transient time of T0 = 500 time units
before the order parameter is calculated from the simula-
tion of further T = 1500 time units. The full phase oscil-
lator system, Eqs.(1)–(2) of the main text, for N = 1000
oscillators requires more care in choosing the integration
times. Let σJ be the current value of σ of the simulation
after J steps. First the system is run for a short time of
T1 = 100 time units and the order parameter is calcu-
lated over T = 1000 time units. After this we calculate
the change in the order parameter compared to the pre-
vious value at σJ−1, ∆R2(J) = 〈R2〉 (σJ)− 〈R2〉 (σJ−1).
This change is compared with the change in the previous
step ∆R2(J − 1). If ∆R2(J) < 2∆R2(J − 1) we assume
the state to be stable, proceed as outlined above and sim-
ulate the system at a higher value of σJ+1 = σJ + ∆σ. If
on the other hand ∆R2(J) ≥ 2∆R2(J −1), the system is
assumed to undergo a change in its state and is simulated
for a further T2 = 104 time units to allow for relaxation
towards its new equilibrium state before the order pa-
rameter is estimated. To ensure that the transition to
the new state has not been missed due to the smaller
transient times the previous state for σJ−1 is simulated
again for T2 time units. Should this repeated simula-
tion reveal the state to be unstable already at σJ−1, we
use the newly simulated state as an initial condition to
continue the sweep with σJ .

B: Equiprobably drawn frequencies

To test if the occurrence of the two distinct scenar-
ios is indeed caused by finite size inhomogeneities in
the realization of the natural frequency distribution, we
simulate the system with equiprobably drawn frequen-
cies. In particular, we simulate (1)-(2) of the main
text using an equidistant draw of the natural frequencies
ωi = −0.25 + 0.5(i − 1)/(N − 1) for N = 50 oscillators.
Figure 4 shows the results of 30 simulations for differ-
ent initial conditions. The system exhibits a high degree
of multistability for different initial conditions leading to
different cluster structures as σ is increased. Most of
the 30 initial conditions follow the path of the single-step
transition to synchrony, with two or three rather evenly
sized clusters. For some initial conditions, however, we

FIG. 4. The synchronization index S for increasing values
of the coupling strength σ. The simulations use an equidis-
tant distribution of natural frequencies ωi = −0.25 + 0.5(i−
1)/(N − 1). Shown are 30 simulations from different random
initial conditions for N = 50 oscillators each, where σ is var-
ied from 0 to 6 in steps of size ∆σ = 0.01. The protocol is
the same as in Fig. 1(a) of the main text. Other parameters:
β = −0.53π, ε = 0.01.

observe the formation of a single dominant cluster with
mean-frequency close to zero leading to the multi-step
transition. In the absence of finite size fluctuations in
the realization of the natural frequencies, fluctuations in
the initial conditions lead to the differentiation in the
synchronization process into the different paths. Hence,
when approximating the continuum limit without nucle-
ation seeds stemming from inhomogeneities in the real-
ization of the natural frequency distribution, typically
homogeneous nucleation takes place with a single-step
transition.

C: Multimodal frequency distributions

In order to support the findings in the main text, we
simulate the system (1)–(2) of the main text for N = 50
oscillators with different frequency distributions mod-
elling the distributions displayed in the inset of Fig. 1(a)
of the main text. To model different nucleation seeds we
consider multimodal frequency distributions with each
peak representing one nucleation site. In particular we
consider a multimodal distribution consisting of M sep-
arated Gaussians of the form

ρ (ω) =

M∑
m=1

1

M
N (µm, s) .

Here N (µm, s) is a normalized Gaussian distribution
with mean µm and standard deviation s.

The associated paths to synchronization are shown in
Fig. 5. We examine distributions with up to M = 3 and
choose the parameters for the Gaussian distributions in
such a way that the peaks are clearly separated and decay
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FIG. 5. Paths to synchrony for different multimodal Gaus-
sian distributions. The procedure for these plots is the same
as in Fig. 1 of the main text (up-sweep). (a) Unimodal Gaus-
sian distribution with a standard deviation of s = 0.0722 and
mean µ = 0, corresponding to the multi-step transition with
a single synchronization seed. (b) Bimodal Gaussian distribu-
tion of equal standard deviation s = 0.0296 with mean values
of µ = ±0.132. This distribution corresponds to the case of
the single-step transition with two synchronization seeds. (c)
Trimodal Gaussian distribution of equal standard deviation
s = 0.020. One peak is centered at 0 whereas the other two
have a mean of µ = ±0.170, respectively. The insets show the
respective underlying probability density function of the natu-
ral frequencies. Each panel consists of 100 runs with different
realizations of the natural frequencies and initial conditions.

sufficiently fast within the interval ω ∈ [−0.25, 0.25]. The
distributions are shown as insets in each panel. Fig. 5 (a)
shows the resulting paths for a single peak with a stan-
dard deviation of s = 0.0722. All realizations of the nat-
ural frequencies follow the path of the multi-step tran-
sition where a big cluster emerges around the mean of
the frequency distribution that progressively grows by
absorbing more of the outer oscillators. The case of two
peaks with a standard deviation of s = 0.0296 is shown in
Fig. 5 (b). One can see clearly that all realisations follow
the path of the single-step transition. As explained in
the main text this is due to the emergence of frequency
clusters of roughly equal size with mean cluster phase
velocities symmetrical around 0. These clusters merge
abruptly at sufficiently large coupling strength σ form-
ing a single cluster. This corresponds to the observation
that synchronization nuclei form around inhomogeneities
in the realization of the natural frequency distribution
and determine the transition path as σ is increased. A
single seed leads to the multi-step transition, whereas two
seeds lead to the single-step transition. For a triple peak
distribution, shown in fig. 5 (c), the synchronization pro-
cess is more complex. It starts as expected with the cre-
ation of three frequency-synchronized clusters, but as the
coupling strength is increased not all simulations show a
sudden merging of all three clusters. In fact some of
the simulations again show either the creation of a single
dominant cluster leading to higher synchronization index
S or the emergence of two big clusters that subsequently
merge at even higher coupling strengths σ.

D: Hysteresis

In Figure 6 we show the same data as in Fig. 1 of
the main text (up-sweep) as well as the behavior of the
time averaged order parameter 〈R2〉 as σ is decreased
via the down-sweep protocol. Additionally we show the
analytical one-cluster solution derived from Eq. (27) as
a dashed line. For a large range in σ, the synchronous
states is shown to be co-stable with various multicluster
states. The fully synchronized state is stable until small
values of σ, where both down-sweep simulations show a
sudden and sharp decline in their order parameter below
a critical value of σ. As soon as the fully frequency syn-
chronized state disappears most of the other coexisting
multicluster states disappear as well, compare with Fig. 3
of the main text. The system abruptly approaches an
asynchronous state. The hysteretic behavior presented
in 6 is a common feature of first-order phase transitions.
The analytical solution predicts the order parameter and
the border to desynchronization very well, with a small
error towards higher order parameters for lower values of
σ. We attribute this error to the assumption of infinitely
many oscillators used in the derivation of the analytic
solution.
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FIG. 6. Hysteric transition in system (6)–(7) with N = 50
oscillators. (a) Up-sweep: Shown are the time averaged sec-
ond moment of the order parameter 〈R2〉 as a function of the
coupling strength σ for 100 simulations with N = 50 oscilla-
tors. Each run is initiated with random initial conditions and
σ is increased in steps of ∆σ = 0.01. For each run natural fre-
quencies are drawn independently from a uniform distribution
ωi ∈ [−0.25, 0.25]. Down-sweep: Additionally shown are the
synchronization indices for two simulations with decreasing σ
starting from the final state of the up-sweep protocol. The
natural frequencies of these down-sweeps are chosen such that
one corresponds to the single-step transition path and one to
the multi-step transition path. The light-blue dashed line
corresponds to the stable branch of the analytical solution of
Eq. (27). (b) We provide a blow-up for the region depicted as
a grey rectangle in panel (a). Other parameters: β = −0.53π,
ε = 0.01.

E: Antipodal symmetry

In order to motivate why it is sufficient to plot the
absolute values |κij | in Fig. 2 of the main text, we show
that the system

dφi
dt

= ωi −
σ

N

N∑
j=1

κij sin(φi − φj), (6)

dκij
dt

= −ε (κij + sin(φi − φj + β)) (7)

is invariant under the transformation

φi → φ̃i = φi + π,

κlm → κ̃lm = −κlm where either l = i or m = i,

for a fixed i = 1, . . . , N .

For equation (6) it is sufficient to examine the term in
the sum which yields

κ̃ij sin
(
φ̃i − φj

)
= −κij sin (φi + π − φj)

= κij sin (φi − φj) .

Similarly, equation (7) remains invariant under the trans-
formation as can be readily seen by comparing with the
transformed equation

−dκ̃ij
dt

= −ε
(
−κ̃ij − sin(φ̃i − φj + β)

)
.

This transformation can be applied to any of the N os-
cillators, changing the sign of a particular κlm.

F: Derivation of multicluster mean-field equations

As outlined in the main text, we use an ansatz that de-
scribes each of the M clusters with three collective vari-
ables and reduces the oscillator-oscillator coupling to a
cluster-cluster coupling. This is done by first assigning
each oscillator i to a cluster µ with Cµ being the index
set of all oscillators in cluster µ. Second, we assume a
set of collective coordinates ϑµ(t), fµ(t) and κµν(t) that
describe the temporal dependency of the phases and the
coupling as follows

φi ≈ φ̃µi = ϑµ(ωi − Ωµ) + fµ, (8)

κij ≈ κ̃µνij = κµν . (9)

The dynamical description of each oscillator is split
up into two parts. fµ serves as a phase variable for
the cluster of the oscillator, with the relative position
within the cluster being described by ϑµ and the rela-
tive frequency difference (ωi − Ωµ). The coupling vari-
ables κij are reduced from an oscillator-oscillator cou-
pling to a cluster-cluster coupling κµν . Inserting the
ansatz Eq. (8)–(9) into the original system Eq. (6)–
(7) yields a non-zero N + N2 dimensional error vector

E =
(
Eφ1

1
. . . EφMN , Eκ1,1

1,1
. . . EκM,MN,N

)
. Introducing the dif-

ference in natural frequencies ∆ωij := ωi − ωj and the

phase difference ∆φµνij := φ̃µi − φ̃νj = ϑµ(ωi −Ωµ) + fµ −
ϑν(ωj −Ων)− fν we write the error corresponding to the
dynamics of the phase and of the coupling as

Eφµi = ϑ̇µ (ωi − Ωµ) + ḟµ − ωi

+
σ

N

∑
j∈Cµ

κµµ sin (ϑµ∆ωij)

+
σ

N

∑
ν 6=µ

∑
j∈Cν

κµν sin
(
∆φµνij

)
,

Eκµνij = κ̇µν + ε
[
κµν + sin

(
∆φµνij + β

)]
.

The error is minimized by requiring that it is orthogonal
to the manifold of the ansatz (8)–(9) parametrized by



9

the collective coordinates. The tangent space is spanned
by the partial derivatives of the ansatz functions with
respect to the collective coordinates. In particular, if we

denote the ansatz (8)–(9) as u =
(
φ̃, κ̃

)
and the collective

coordinates c = (ϑµ, fµ, κµν), the minimization of the

error amounts to
(
∂
∂ci
u
)T
·E = 0 for all i = 1, 2, 3. This

yields the desired temporal evolution equations for the
collective coordinates. Projecting onto ∂u/∂ϑµ yields

ϑ̇µ
∑
i∈Cµ

(ωi − Ωµ)
2

=
∑
i∈Cµ

(ωi − Ωµ)ωi

− σ

N

∑
i∈Cµ

(ωi − Ωµ)
∑
j∈Cµ

κµµ sin (ϑµ∆ωij)

− σ

N

∑
i∈Cµ

(ωi − Ωµ)
∑
ν 6=µ

∑
j∈Cν

κµν sin
(
∆φµνij

)
. (10)

Here, we used that, by definition,
∑
i∈Cµ (ωi − Ωµ) = 0

to eliminate ḟµ from this equation. Similarly, the projec-
tions onto ∂u/∂fµ and onto ∂u/∂κµν yield

ḟµ = Ωµ −
σ

NµN

∑
i,j∈Cµ

κµµ sin (ϑµ∆ωij)

− σ

NµN

∑
i∈Cµ

∑
ν 6=µ

∑
j∈Cν

κµν sin
(
∆φµνij

)
,

(11)

κ̇µν = −ε

κµν +
1

NµNν

∑
i∈Cµ

∑
j∈Cν

sin
(
∆φµνij + β

) .
(12)

Equations (10)-(12) approximate the dynamics for a fi-
nite number of oscillators and can be analyzed for any
given set of natural frequencies. To further simplify these
equations, we consider the continuum limit N → ∞,
where sums of the form 1

N

∑N
i=1 g(ωi) are evaluated as∫

g(ω)ρ (ω) dω for an arbitrary function g. We mainly
consider a uniform frequency distribution with

ρ (ω) =

{
2, for ω ∈ [−0.25, 0.25] ,

0, otherwise.

For the analysis of two cluster states we consider a
distribution with disjoint support. We consider

ρ1(ω) =

{
2
n1

for ω ∈ [−0.25,−0.25 + 0.5n1] ,

0 otherwise,

ρ2(ω) =

{
2
n2

for ω ∈ [0.25− 0.5n2, 0.25] .

0 otherwise,

with n2 = 1 − n1. The N1 = n1N oscillators with
frequencies drawn from ρ1(ω) are assigned to cluster 1,
and the remaining N2 = n2N oscillators with frequen-
cies drawn from ρ2(ω) are assigned to cluster 2. The

probability density of the full system can be recovered
as a mixture of the two cluster probability densities
ρ (ω) = n1ρ1 (ω) + n2ρ2 (ω) In this case the order pa-

rameter for a single cluster is rµ = 4
nµϑµ

sin
(
nµϑµ

4

)
. In-

troducing f = f1 − f2, we arrive at equations (5a)-(5c)
in the main text for the collective coordinates which we
recall here for completeness

ϑ̇µ = 1 +
σ

vµϑµ

(
cos

(
ϑµnµ

4

)
− rµ

)
× [κµµnµrµ + κµνnνrν cos f ] ,

(13a)

ḟ = Ω12 − σr1r2 (n1κ21 + n2κ12) sin f, (13b)

κ̇µν = − ε [κµν + rµrν sin (fµ − fν + β)] , (13c)

with Ω12 = Ω1 − Ω2 and the variance of the natural
frequencies of a cluster vµ = 1

Nµ

∑
i∈Cµ (ωi − Ωµ)

2
.

G: Perturbative approximation for the two-cluster
state

In this section, we derive an explicit expression for the
two-cluster states emerging in (13). To do this, we use
a perturbative approach with respect to the small pa-
rameter ε. Numerical simulations show that intercluster
interactions, mediated via the coupling κµν , can be con-
sidered as small. We assume that each cluster in first
approximation can be treated as if it were isolated up
to a small perturbation due to intercluster interaction.
Further, we assume that the phase difference between
the two clusters f grows linearly in time corresponding
to a relative rotational motion with constant phase ve-
locity Ω′. This suggests the following expansion of the
collective coordinates in orders of ε

ϑµ (t) = ϑ(0)µ + εϑ(1)µ (t) +O
(
ε2
)
, (14)

κµν (t) = κ(0)
µν (t) + εκ(1)

µν (t) +O
(
ε2
)
, (15)

f (t) = Ω′t+ εf (1) (t) +O
(
ε2
)
. (16)

Using a Taylor expansion, the order parameter is ex-
panded as

rµ (t) =
4

ϑ
(0)
µ nµ

sin

(
ϑ
(0)
µ nµ

4

)

+ ε
ϑ
(1)
µ

ϑ
(0)
µ

[
cos

(
ϑ
(0)
µ nµ

4

)
− 4

ϑ
(0)
µ nµ

sin

(
ϑ
(0)
µ nµ

4

)]
+O

(
ε2
)

= r(0)µ + εr(1)µ (t) +O
(
ε2
)
.

In order to derive equations for the expansion coefficients,
we insert the expansion (14) into Eqs.(13) and equate
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powers of ε. For the coupling variables this yields

κ̇(0)
µν = 0,

κ̇(1)
µν = −

(
κ(0)
µν + r(0)µ r(0)ν sin (±Ω′t+ β)

)
,

where Ω′ and −Ω′ correspond to κ12 and κ21, respec-
tively. Note that for ν = µ we set Ω′ = 0. To en-

sure constant intracluster coupling we require κ(0)
µµ =

−
(
r
(0)
µ

)2
sin (β). Setting κ

(0)
µν = 0 ensures that the in-

tercluster coupling is small compared to the intracluster
coupling. For µ 6= ν the intercluster coupling in the non-
synchronized case is readily integrated yielding

κ(1)
µν (t) =

±1

Ω′
r(0)µ r(0)ν cos (±Ω′t+ β) . (17)

Similarly, we find for ϑµ

0 = 1 +
σ

vµϑ
(0)
µ

(
cos

(
ϑ
(0)
µ nµ

4

)
− r(0)µ

)
·
[
κ(0)
µµnµr

(0)
µ + κ(0)

µν nνr
(0)
ν cos (Ω′t)

]
,

(18)

ϑ̇(1)µ =
ϑ
(1)
µ σ

vµ

(
ϑ
(0)
µ

)2
8 sin

(
ϑ(0)
µ nµ
4

)
ϑ
(0)
µ nµ

− 2 cos

(
ϑ
(0)
µ nµ

4

)

−
ϑ
(0)
µ nµ sin

(
ϑ(0)
µ nµ
4

)
4


·
[
nµκ

(0)
µµr

(0)
µ + κ(0)

µν nνr
(0)
ν cos (Ω′t)

]
+

σ

vµϑ
(0)
µ

(
cos

(
ϑ
(0)
µ nµ

4

)
− r(0)µ

)
·
[
κ(1)
µµnµr

(0)
µ + κ(0)

µµnµr
(1)
µ + κ(1)

µν nνr
(1)
ν cos (Ω′t)

]
.

(19)

A time-independent ϑ
(0)
µ can only be achieved by setting

κ(0)
µν = 0 as above. Using these solutions to calculate the

intercluster dynamics given by f yields

εḟ (1) = Ω1 − Ω2 − Ω′

− εσ

Ω′

(
r
(0)
1 r

(0)
2

)2 [n2
2

(sin (2Ω′t+ β)− sinβ)

+
n1
2

(sin (β − 2Ω′t)− sinβ)
]
.

(20)

For self-consistency with the ansatz (14), we choose Ω′

in such a way that only sinusoidal terms are left in the
previous equation. All dynamics which is linear in time is
absorbed providing us with an explicit formula to derive
Ω′, which reads

0 = (Ω′)
2

+ Ω′ (Ω2 − Ω1)− εσ

2

(
r
(0)
1 r

(0)
2

)2
sinβ. (21)

H: Estimating upper and lower bounds for cluster
synchronization

Eq. (21) can be used to estimate the upper bound for
the existence of the two-cluster solution. Solving the
quadratic equation for real valued Ω′ implies that

(Ω1 − Ω2)
2 ≥ −2εσ

(
r
(0)
1 r

(0)
2

)2
sinβ. (22)

For the chosen parameter values of ε = 0.01, β = −0.53π
and Ω1 − Ω2 = −0.25, we calculate the highest value of
σ for which the condition is no longer satisfied. A rough

estimate using r
(0)
1 = r

(0)
2 = 1 yields σS = 3.14. Note

that the approximate values for r
(0)
µ depend on n1 and σ

explicitly, and implicitly through ϑ
(0)
µ , see Eq. (18). For

increasing values of σ starting at our rough estimate, we
find the value for σ for which condition (22) is no longer
satisfied. This turns out to be about σS ≈ 3.152 for both
n1 = 0.5 and n1 = 0.95 with an accuracy of ∆σ = 0.001.

To estimate a lower bound for the cluster synchroniza-
tion we use Eq. (18) and analyse if it is solvable. Again
checking for decreasing values of σ using a step size of
∆σ = 0.001, we arrive at σC ≈ 0.460 as a lower bound
for the two-cluster states. Here again the same value is
attained for both n1 = 0.5 and n1 = 0.95.

I: Single Cluster synchronization with collective
coordinates

In the case when all oscillators are frequency synchro-
nized, we can use a simpler collective coordinate ansatz
with just a single variable. The ansatz is as follows

φi ≈ φ̂i = ϑωi (23)

κij ≈ − sin (φi − φj + β) . (24)

Here ϑ describes the distance of a given oscillator with
natural frequency ωi from the mean phase of the fre-
quency synchronized cluster and κij are approximated by
their steady-state values. Proceeding analogously as in
Section we determine the error introduced by the ansatz
of the phases and couplings, and obtain

Eφi = ϑ̇ωi − ωi −
σ

N

N∑
j=1

sin (ϑ∆ωij + β) sin (ϑ∆ωij + α)

Eκij = ϑ̇∆ωij cos (ϑ∆ωij + β) .

Calculating the projection of the error on the tangent
space of the ansatz space and forcing it to be zero yields
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an equation of motion for our collective coordinate

ϑ̇

 N∑
i=1

ω2
i −

N∑
i,j=1

∆ω2
ij cos2 (ϑ∆ωij + β)

 =

N∑
i=1

ω2
i +

σ

N

N∑
i=1

ωi

N∑
j=1

sin(ϑ∆ωij + β) sin(ϑ∆ωij). (25)

Setting ϑ̇ = 0 yields a condition for the existence of a
fully synchronized state. We obtain

0 = 1− σ

v2N2

∑
i

ωi
∑
j

1

2
cos (2ϑ∆ωij + β) . (26)

Here v = 1
N

∑N
i=1 ωi is the standard deviation of the nat-

ural frequencies. Again choosing a uniform distribution
of frequencies between −0.25 and 0.25 provides a simpli-
fied equation to determine ϑ

1 = 48σ sin(β)
sin
(
ϑ
2

)
ϑ

(
ϑ
2

)
cos
(
ϑ
2

)
− sin

(
ϑ
2

)
ϑ2

. (27)

This equation can be used to analyze the transition from
a fully synchronized system to a desynchronized one. In
Fig. 6, we plot the stable branch of the analytical solu-
tion for the single cluster state along with the simulation
result for the full system. Note that (27) for the reduced
system gives rise to one stable and one unstable solu-
tion that vanish in a fold bifurcation, see Ref. [58] from
the main text. We observe a very good agreement of
the numerical and the analytical results. Together with
the findings presented in the two previous sections, the
emergence of various transition pathways to synchrony
and the hysteretic behavior can be accurately explained.

J: Frequency clustering in the synchronization
transition

To examine the clustering during the transition to syn-
chrony in more detail, we present the distribution of the

mean phase velocities ρ
(〈
φ̇i

〉)
for 100 different simula-

tions encoded in color versus the overall coupling strength
σ in Fig. 7. The results are displayed in logarithmic scale.
Each picture uses the data from 100 simulation runs and
for each run the mean phase velocity is shifted by the
average frequency of that particular run. We use the up-
sweep protocol described in Sec. with a transient time
of T0 = 105 time units and an averaging time of T = 104

time units. Figure 7(a) shows the statistics from 100
simulations with different natural frequencies from a uni-
form distribution ωi ∈ [−0.25, 0.25] for each simulation.
Figure 7(b) displays the data from 100 simulations us-
ing a fixed realization of natural frequencies that leads
to a multi-step first-order transition, similar to the ones

FIG. 7. Evolution of the mean phase velocity
〈
φ̇i
〉

as a func-

tion of increasing σ. For each value of σ the color code denotes
the natural logarithm of the relative number of oscillators
found at a specific mean phase velocity. Each picture shows
results for 100 simulations with 50 oscillators each. (a) 100
different realizations of natural frequencies, (b) using fixed
frequencies with 100 different initial conditions leading to a
multi-step transition, (c) frequencies leading to the single-step
transition. In the plot the frequencies are shifted vertically by
the mean value of the realization of the natural frequencies
such that each simulation is centered around 0. The simu-
lation procedure is the same as in Fig. 1 of the main text.
Other parameters: β = −0.53π, ε = 0.01.

shown in Fig. 1(b) of the main paper. The fixed real-
ization leads to predetermined paths and allows for an
analysis of the synchronization process in more detail.
Note the emergence of a big group of oscillators around〈
φ̇i

〉
= 0 for small values of σ. This corresponds to the

emergence of a large cluster for all simulations, exactly as
shown in Fig. 2 of the main text. Figure 7(c) shows the
data for 100 simulations of a fixed realization of natural
frequencies that lead to a single-step first-order transi-
tion, similar to the ones shown in Fig. 1(c) of the main
paper. Note the two branches of oscillators located sym-
metrically around 0. These represent the two clusters of
almost equal size. Until these two clusters merge there
are no oscillators with mean phase velocities around 0.
These two clusters are also observable in Fig. 2(g) of the
main text.
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