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Abstract

We extend the data-driven method of Sparse Identification of Nonlinear Dynamics
(SINDy) developed by Brunton et al, Proc. Natl. Acad. Sci USA 113 (2016) to the case of
delay differential equations (DDEs). This is achieved in a bilevel optimization procedure by
first applying SINDy for fixed delay and then subsequently optimizing the error of the recon-
structed SINDy model over delay times. We test the SINDy-delay method on a noisy short
data set from a toy delay differential equation and show excellent agreement. We then apply
the method to experimental data of gene expressions in the bacterium Pseudomonas aerug-
inosa subject to the influence of zinc. The derived SINDy model suggests that the increase
of zinc concentration mainly affects the time delay and not the strengths of the interactions
between the different agents controlling the zinc export mechanism.

keywords: data-driven modelling; SINDy; delay-differential equations; Pseudomonas
aeruginosa, zinc homeostasis

1 Introduction

Our ability to understand, forecast and control dynamical systems depends crucially on our
knowledge of its underlying equations. Recently data-driven methods to uncover underlying
equations have been proposed to uncover unknown dynamics and to increase our forecast
capabilities [6, 9, 39, 24, 45, 2]. A particularly attractive and easy-to-implement method,
proposed by Brunton et al. [7], is Sparse Identification of Nonlinear Dynamics, or SINDy for
short. The problem which is addressed by SINDy is the following: Given observations xn ∈ R
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sampled at (not necessarily equidistant) times tn which were generated by a dynamical system
of the form

ẋ = F(x),

where the dot signifies the time derivative, find an approximation to this dynamical system
using only the data. SINDy approaches this question by assuming that the vector field
F(x) lies in the span of a given (potentially very large) library of functions such as simple
polynomials. This reduces the problem to linear regression on a library of nonlinear functions.
In line with the parsimony principle, SINDy imposes a sparsity constraint leading to a sparse
approximation of F(x) in terms of the members of the library functions. If the system is only
partially observed, the method of SINDy can be extended to the reconstructed phase-space
using Takens’ embedding theorem and it is then known as the Hankel alternative view of
Koopman (HAVOK) analysis [5]. SINDy has been successfully applied to systems appearing
in a wide range of scientific disciplines, including fluid dynamics, plasma physics and nonlinear
optics [30, 12, 40].

Many dynamical systems involve a delayed feedback response and are modelled by delay-
differential equations (DDEs). Examples range from the natural world to engineering with
applications in, for example, population dynamics [11, 23], biological regulatory systems [19],
cardiac dynamics [22, 21], climate dynamics [43, 26], mechanical vibration [48] and in optical
systems [44], to name just a few. In this paper, we extend the framework of SINDy to
dynamical systems which are described by DDEs and where in addition to the sparse subset
of the library of nonlinear functions and their associated coefficients, the delay has to be
determined as a parameter. We achieve this by employing a bilevel optimization in which,
for a fixed specified delay time, the error in reproducing the observations made by each
approximate SINDy model is minimized. Particular emphasis will be given to deal with noisy
data. We shall first test the proposed SINDy-delay methodology to a one-dimensional toy
model with artificially noisy data before considering a challenging problem with biological
data of gene expressions in the bacterium Pseudomonas aeruginosa subject to the influence
of zinc.

P. aeruginosa is an opportunistic pathogen capable of causing acute infections in hospi-
tals, in particular in immunocompromised patients, in cystic fibrosis patients and in severe
burn victims [28, 25]. Therefore, it belongs to the Priority 1 category for research into an-
tibiotic resistance as determined by the world health organization [49]. P. aeruginosa has a
large genome, coding for 5570 open reading frames, of which 72 are involved in predicting so
called two component systems (TCS) [42]. TCSs are crucial biological building blocks. They
are composed of a sensor protein which in response to a stimulus, activates a cognate tran-
scriptional regulator by phosphorylation, allowing for a rapid adaptation to environmental
changes. P. aeruginosa has one of the highest numbers of putative TCSs among bacteria,
contributing to the ubiquity of this micro-organism [1]. For instance, the CzcRS TCS pro-
motes resistance to high concentrations as well as to large fluctuations of the concentration
of trace metals such as zinc. This is advantageous for the bacteria in an infectious context
[36, 13] since to counter the multiplication of bacteria, the host uses nutritional immunity
strategies via scavenging essential nutrients including zinc, iron and manganese [27, 8, 31].
Conversely, during phagocytosis, macrophages deliver a toxic amount of zinc and copper into
the phagolysosome, leading to the death of the invader organism [14, 41, 18]. Thus, the suc-
cess of an infection depends largely on the capacity of a pathogen to survive in zinc deficient
as well as zinc excess environments and to switch from one to the other of these extreme
conditions. P. aeruginosa has a whole arsenal of the most effective systems for regulating
the entry and exit of the metal. Moreover, zinc was shown to exacerbate the bacterium
pathogenicity, enhancing the virulence factor production and rendering this micro-organism
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more resistant to antibiotics, especially those belonging to the carbapenem family, a last
resort anti-pseudomonas class of compounds [36, 13]. In order to better understand the P.
aeruginosa zinc homeostasis, we derive a mathematical delay differential equation model fo-
cusing on the dynamic of two main zinc export machineries. To address this challenging
question, we use the proposed SINDy-delay methodology applied to experimental data.

The paper is organised as follows. In Section 2 we introduce an extension of SINDy
to find parsimonious models for delay-differential equations. In Section 3 we illustrate the
effectiveness of our method in the context of a known toy model DDE; in particular, we
show that the DDE is recovered well even for short noise-contaminated observations. In
Section 4 we then apply our method to experimental data of gene expression data of the
bacterium P. aeruginosa under various concentrations of zinc. We conclude in Section 5
and discuss biological implications of the discovered DDE describing the bacterium’s zinc
regulation system.

2 Sparse Identification of Nonlinear Dynamics with

delay for noisy data (SINDy-delay)

Consider a d-dimensional dynamical system with delay time τ ,

ẋ = F(x(t),x(t − τ)), (1)

where x(t) ∈ R
d, which is probed at times tn, n = . . . ,−1, 0, 1, 2, 3 . . . , by observations

χn = xn + Γηn,

with measurement error covariance matrix Γ2 ∈ R
d×d and independent normally distributed

noise ηn ∼ N (0, Id). For simplicity we assume here throughout Γ = γ Id. The aim is to find
a parsimonious approximation of the vector field F(x(t),x(t − τ)) as a linear combination
of nonlinear functions selected from a library R of cardinality NR. In particular, the kth
component is expressed as a linear combination of all the library functions θj ∈ R, j =
1, . . . , NR, of the form

Fk(x(t),x(t − τ)) =

NR
∑

j=1

ξjkθj(x(t),x(t − τ)) + ǫk(x(t),x(t − τ)), (2)

for all components k = 1, . . . , d. Simple nonlinear regression would amount to determining
the coefficients ξjk using the method of least-squares to minimize the mismatch ǫk. In SINDy
rather, a sparsity constraint is invoked, seeking a parsimonious model with as many of the
coefficients ξjk being zero while still ensuring fidelity of the approximation (2) with respect to
the data.

To describe how SINDy finds such an approximation, let us assume for the moment that
observations are taken at equidistant times tn = n∆t with constant sampling time ∆t. To
account for the delay we form the observation vector

χ̂(s)
n =

(

χn

χn−s

)

∈ R
2d,

for n = 1, . . . , N , where the positive integer s is related to a delay time τ = s∆t. Following
the exposition in Brunton et al. [5] and Brunton and Kutz [6], we collect the observation
vectors χ̂(s)

n in a data matrix

XT =
(

χ̂
(s)
1 χ̂

(s)
2 . . . χ̂

(s)
N

)

∈ R
2d×N .
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Similarly we define the matrix consisting of derivatives of the observations χn at the obser-
vation times

Ẋ
T
=

(

χ̇1 χ̇2 . . . χ̇N

)

∈ R
d×N . (3)

Note that for the derivatives we only consider the time derivatives for χn and not for χn−s

which would be redundant information. Typically one does not have access to the actual
derivatives χ̇n but only to the variables χn themselves. For noise-free finely sampled obser-
vations with ∆t ≪ 1 finite differencing can be employed to approximate the derivatives. For
noisy observations, however, estimating derivatives via finite-differencing leads to an ampli-
fication of the noise. Denoising methods such as the total-variation regularized method are
required [10]. Here we propose to use simple polynomial regression for denoising as discussed
in the following remark.

Remark 2.1. (Denoising procedure for computing the derivative matrix (3)) For computing
each χ̇n , n = 1 . . . , N in (3), we use polynomial regression. We define for the corresponding
observation time tn a temporal window [tn − δ, tn + δ] with δ = r∆t and fit a 3rd order
polynomial through the 2r − 1 observations χn−r,χn−r+1, . . . ,χn+r lying within this time
window. Choosing a sufficiently large temporal window containing more data points compared
to the regression polynomial degree allows for noise reduction.

The derivatives χ̇n can then be analytically determined from the fitted polynomials at
each time tn. This denoising procedure can easily be adapted to handle non-equidistantly
sampled observations which may be the situation in experimental data (including the case of
determining delayed data at tn−τ which may not have been directly observed). Our denoising
procedure is closely related to the Savitsky-Golay filter [38] and denoising by splines [47]; for
a comparison of various denoising strategies see [46].

At the heart of SINDy lies the choice of a suitably large library R. A natural choice
is the set of monomials in xk(t), xk(t − τ), k = 1, . . . , d up to a fixed degree M , R =
{1, x1(t), x2(t), x1(t − τ), x2(t − τ) . . .} with cardinality NR =

(

2d+M
M

)

. Given a library R,
the associated library matrix Θ(X) ∈ R

N×NR is constructed from the data by evaluating all
functions θj(x(t),x(t − τ)) of the library R at the observation times t = t1, . . . , tN . When
considering the library consisting of monomials of up to order M , the library matrix becomes

Θ(X) =
(

1 X X2 X3 . . . XM
)

,

where the matrices Xm ∈ R
N×(2d+m−1

m
) consist of rows whose coefficients include all possible

monomials of degree m between the d-dimensional variables χn and χn−s. For simplicity, we
will later in the numerical experiments exclude any products between χn and χn−s. This

reduces the number of columns of each Xm to 2
(

d+m−1
m

)

and the overall number of columns

of Θ(X) to NR = 2
(

d+M
M

)

.
In SINDy the minimization of the error ǫk made by the approximation (2) is achieved by

an ℓ1-regularized regression problem. Defining first the ℓ2-cost function

C(Ξ) =
d

∑

k=1

‖|Ẋk −Θ(X)ξk||
2
2, (4)

where Ẋk ∈ R
N denotes the kth column of Ẋ and Ξ = {ξk}k=1,...,d is the coefficient matrix

consisting of column vectors ξk ∈ R
NR which denote the coefficients associated with the

library functions for the kth component of the state variable (cf. (2)). To promote sparsity
of the coefficients the cost function is minimized under an ℓ1-sparsity constraint according to

ξk = argmin
ξk∈R

NR

||Ẋk −Θ(X)ξk||2 + λ||ξk||1, (5)
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where the regularization parameter λ controls the sparsity. Rather than using a sequential
thresholded least-squares algorithm to approximate the solution of the optimisation problem
(5), as suggested in [7], we promote here sparsity by the following sequential procedure.
Define ξqk to be the coefficient of the qth library function θq which is associated with the kth
component of the vector field. For each q = 1, . . . , NR calculate the least square solution
ξqk ∈ R

NR corresponding to the minimization of the cost function C(Ξ) with the hard sparsity
constraint

ξqk = 0.

For each of the NR solutions ξqk record the associated minimized cost C(Ξ), and select the
value

q∗ = argmin
q=1,...,NR

min
ξk

{C(Ξ) ; ξqk = 0} (6)

corresponding to the hard sparsity constraint ξq
∗

k = 0 which leads to the smallest increase in

the minimum of the cost C(Ξ). We then set ξq
∗

k = 0, i.e. excluding θq⋆ from the library R
for the kth state variable. Algorithmically this amounts to deleting the qth column of Θ(X)
when seeking solutions of (5). This process of eliminating coefficients ξqk is then repeated
for the remaining library functions in R (and the corresponding columns of Θ(X)) until
a significantly large change of the cost C(Ξ) has been accrued, suggesting that removing
any of the remaining functions will lead to a strong increase of the cost function, thereby
deteriorating the accuracy of the SINDy model.

Remark 2.2. (Promoting sparsity to approximate solutions of (5)) Promoting sparsity by
envoking (6) avoids having to set a cutoff value p such that coefficients with |ξjk| ≤ p are
removed as proposed in Brunton et al. [7]. Instead the degree of sparsity is visually determined
by plotting the cost function for an increasing number of removals. This does not require the
data X to be normalized in a pre-processing step and can be applied to situations in which
variables may exhibit widely varying ranges. We shall encounter such a situation for the
experimental data in Section 4.

The above procedure is applied to each of the components k = 1, . . . , d with each compo-
nent having their separate subset of eigenfunctions selected. Collecting the typically sparse
output vectors ξ∗k k=1,. . . d in the matrix Ξ∗ = (ξ∗1 , . . . ξ

∗
d), the approximate SINDy delay

differential equation model for arbitrary fixed delay time τs = s∆t is given by

ẋk(t; τs) =

NR
∑

j=1

(ξjk)
∗θj(x(t),x(t − τs)), k = 1, . . . , d. (7)

Up to here this is standard SINDy, as described in Brunton et al. [7], except for the proposed
alternative method of denoising with local polynomial regressions of the data points described
in Remark 2.1, and for the modified algorithm to approximate solutions to the optimization
problem (5) described in Remark 2.2.

To account for a delay we extended the nonlinear library {θk}k=1,...,NR
to include delay

terms x(t− τ), which fits in the standard SINDy methodology for fixed delay time parameter
τs = s∆t. To estimate the delay time τ = s∆t of the dynamical system (7) which best
matches the data χn an additional optimization procedure is employed: Consider a range of
delay times τs = s∆t with integer sequence s ∈ {0, 1, 2, . . . , }. For each τs we perform the
above procedure to obtain the SINDy model (7). We then compute the reconstruction error
E(τs) for fixed delay time parameter τs as the ℓ2-error between the solution of the SINDy
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Input: Observational data χn, n = . . . ,−1, 0, 1, 2, . . ., and nonlinear function library set
R = {θj ; j = 1, . . . , NR}.
Output: Delay time τ ∗ and coefficient matrix Ξ∗ determining the delay differential
equation model (10).

Compute the derivative matrix Ẋ in (3), with denoising procedure (see Remark 2.1);
for all delay time τs = s∆t, s ∈ {0, 1, 2, . . .} do

Compute the data matrix X and the associated library matrix Θ(X).
for k ∈ {1, . . . , d} do

Set the list Q ⊂ {1, . . . , NR} of indices of vanishing coefficients ξjk = 0 to achieve
the sparsity constraint of the SINDy methodology to Q = ∅;

while C = minξk∈R
NR{‖|Ẋk −Θ(X)ξk||2 ; ξ

j
k = 0 for all j ∈ Q} does not increase

significantly (see Remark 2.2) do
Compute
(q∗, ξ∗k) = argmin

q∈{1,...,NR}\Q, ξk∈R
NR

{‖|Ẋk −Θ(X)ξk||2 ; ξ
j
k = 0 for all j ∈ Q ∪ {q}}.

Set Q = Q ∪ {q∗}.
end

end
Keep Ξ∗ = {ξ∗1 , . . . , ξ

∗
d} and the corresponding error E(τs) in (8).

end
Save the optimal delay time τ ∗ given in (9), and the corresponding coefficient matrix Ξ∗.

Algorithm 1: SINDy algorithm for dynamical systems with temporal delay.

model (7) and observations χn,

E(τs) =
1

Z

N
∑

n=1

||x(tn; τs)− χn||
2. (8)

We set the normalization constant to Z =
∑N

j=0 ||χj ||
2. Note that we define the error E(τs)

here in terms of the trajectories x(t) rather than via the derivatives as in the cost function
(4) used in the SINDy core. This proves to be advantageous as trajectories are less affected
by the noise than their derivatives. The optimal delay time is estimated as the solution of

τ⋆ = argmin
τs

E(τs). (9)

This finally yields the SINDy-delay differential equation model,

ẋ(t)T = Θ(x(t)T ,x(t− τ∗)T )Ξ∗. (10)

We remark that the devising strategy proposed in Remark 2.1 allows for non-uniformly sam-
pled data, provided the sampling times are not too far apart. The required values of unob-
served x(t− τ) can be evaluated by the proposed polynomial regression. We summarize the
extension of the SINDy methodology to systems involving temporal delays in Algorithm 1. In
the next Section we show how the SINDy-delay method performs for artificial data obtained
from a simple one-dimensional DDE.
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N ∆t noise γ observations τ⋆ x(t) x(t− τ) x3(t) error E(τ τ
⋆

)

– – – – 7 1 −0.75 −1 –

(a) 4000 0.025 0 x, ẋ 7.00 1.00 −0.75 −1.00 1.36e − 03
(b) 4000 0.025 0 x 7.00 0.99 −0.75 −0.99 1.80e − 03
(c) 200 0.25 0.02 x 7.00 0.84 −0.71 −0.88 2.56e − 02
(d) 4000 0.025 0.02 x 7.025 0.92 −0.74 −0.94 1.94e − 02

Table 1: Results of the SINDy-delay method (Algorithm 1) applied to data obtained from the
toy model (11). The first row denotes the true delay time and coefficients of the DDE (11) used
to generate the observations. Rows (a)–(d) present results for the different scenarios described
in the main text. We present results the estimated delay times τ , the coefficients as well as the
associated reconstruction error E(τ) (cf (8)) between the data and the SINDy differential equation
model (10) for varying data length N , sampling times ∆t, noise levels γ. The columns for the
monomial terms x(t), x(t−τ), x(t)3 display the estimated corresponding coefficients ξj1 (coefficients
for the remaining monomials were estimated to be 0 in all experiments). Experiments in which
only x is observed required polynomial regression as described in Remark 2.1.

3 Application to a toy model

To illustrate how the SINDy-delay method is able to determine an underlying DDE to-
gether with the delay time parameter from noisy observations, we consider the following
one-dimensional DDE,

ẋ(t) = x(t)− x(t)3 − αx(t− τ). (11)

This DDE was introduced as a toy model in the context of climate science to describe, for
example, the El Niño – Southern Oscillation (ENSO) phenomenon where x(t) denotes a sea-
surface temperature anomaly at time t [43]. We choose in the following as parameter value
α = 0.75 and a delay time of τ = 7. The initial solution on the time interval [−τ, 0] is chosen
to be the stable periodic solution to (11) and with x(0) = 1. For the set of nonlinear library
functions R, we consider all monomials up to cubic degree, R = {1, x(t), x(t)2, x(t)3, x(t −
τ), x(t− τ)2, x(t− τ)3}, excluding products of x(t) and x(t− τ). We simulate the DDE (11)
using the Matlab dde23 integrator with absolute and relative tolerances of 10−8 to produce
time series of N observations sampled at equidistant times with sampling time ∆t [32].

We present results for several scenarios with increasing difficulty. In particular, we inves-
tigate how the accuracy of the method depends on the amount of data available as well as on
the level of noise. In the following we restrict the delays τs to τs = s∆t for s = 1, . . . , 8.5/∆t
so that we sample from the interval [0, 8.5].

We begin with the ideal situation of noiseless observations of both the state x and the
derivative ẋ. We consider observations with N = 4000 sampled at equidistant times with
sampling interval ∆t = 2.5 · 10−2. Figure 1(a) shows the increase of the normalised cost
function C(Ξ) upon removal of members of the library Θ(X) for fixed delay time τs. The
normalization is with respect to C(0), the value when all library functions are removed,
i.e. the error encountered for a rough model with a constant solution x(t) = x(0). The
member of the library R to be removed at each iteration is chosen as the one leading to
the least increase of the normalized cost function. This iterative process terminates with
the remaining terms as output, just before the normalized cost function increases by more
than 10%. We present results for the delay time τs = 7 (blue curve with open circles),
corresponding to the true delay time, and for a non-optimal delay time τs = 6 (red curve
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(a) noiseless observations of x and ẋ (N = 4000). (b) noisy observations of x (N = 200, γ = 0.02).

Figure 1: Cost function C(Ξ) (nomalized by C(0)) against removed monomials for fixed delay.
Results are shown for the true delay time τs = 7 (open circles, online blue) and for the non-
optimal delay time τs = 6 (diamonds, online red). The error increases after iteration 4 of the
SINDy algorithm, as soon as the terms x, x3, x(t − τ) actually present in the underlying DDE
model start to be removed from the library.

with diamonds). We indicate for both delay times the library functions which are removed
at each iteration. For the correct delay time τs = 7, as expected, we observe a jump in the
cost function when one of the terms is being removed which appears in the DDE (11) (i.e.
x(t), x(t)3, x(t− τ)). For the non-optimal delay time τs = 6 we also see, as expected, a jump
but the selected terms x(t), x(t)3, x(t− τ)3 do not correspond to the actual terms appearing
in (11). We also observe a significantly lower value of the cost function for the (optimal)
delay time τs = 7 compared to the non-optimal delay time τs = 6 at iteration numbers for
which none of the selected monomials have been removed. In Figure 2 (open circles, online
blue), we show how the optimal delay time τ⋆ is determined by inspecting the reconstruction
error E(τs) (cf. (8)). The reconstruction error has a clear minimum at τ⋆ = 7. In the more
challenging case when only (N = 4000) noise-less observations x(tn) are available and the
derivative matrix Ẋ has to be estimated in a post-processing step using the polynomial
smoothing described in Remark 2.1. We perform the polynomial regression with r = 25 with
δ = r∆t = 0.625. The SINDy algorithm recovers the coefficients and delay times close to the
true values as seen in row (b) of Table 1.

We now test the method in the difficult case of short noise-contaminated data with
N = 200. The variable x(t) is sampled at observation intervals of ∆t = 0.25 and are
contaminated with observational noise with γ = 0.02. To estimate the derivatives from the
data polynomial regression is employed with r = 5 and δ = r∆t = 1.25. Note the smaller
value of r compared to the noiseless case considered above accounting for the ten-times
larger sampling time used here. Figures 1(b) and 2 (diamonds, online red) show that,
remarkably, SINDy identifies the correct members of the library and provides an excellent
estimation of the delay time with τ⋆ = 7. The estimated parameters for the SINDy model
(7) are reported in row (c) of Table 1, and, unsurprisingly, more strongly deviate from
the true values with reconstruction error E(τ⋆ = 7) of 2.56%. If a longer time series with
N = 4000 is used to train the SINDy model, the error is reduced to 1.94% (Table 1, row
(d)), indicating that the limiting factor is the noise rather than the length of the time series.
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Figure 2: Reconstruction error E(τs) as a function of the delay time τs, showing a clear minimum
at the true delay time τ = 7 for the ideal case with N = 4 000 noiseless observations of x and ẋ

(open circles; online blue) and for the case of N = 200 noisy observations of x with noise level
γ = 0.02 (diamonds; online red).

Figure 1(b) shows again the normalized cost function C(Ξ) upon removal of members of
the library for fixed delay time τs. We show results for the true delay time τs = 7 and a
for a non-optimal delay time τs = 6. The increase of the cost function upon removal of
terms appearing in the true model is less pronounced than in the ideal case of noiseless
observations (cf. Figure 1(a)). We remark that the value of the cost function for iteration
numbers before the removal of the monomials of the DDE (11) is significantly larger than
for the ideal noiseless case. Figure 2 shows the reconstruction error E(τm) as a function
of the delay time τs. As in the noiseless case a clear minimum is observed at τs = 7
corresponding to the delay of the true model. Near the minimum the reconstruction error
E(τs) is continuous. For delay times far away from the minimum the reconstruction error
experiences discrete jumps, which are caused by the discrete removal of library terms for
those values. The perfect accuracy of the estimation of the delay with τ⋆ = 7 is due to the
coarse sampling time ∆t = 0.25 implying that the next closest values of delays used for the
optimization are τs = 6.75 and τs = 7.25, which both lead to a significantly larger value of
the reconstruction error E(τs). We remark that one may use interpolation to provide a more
accurate estimate for the delay time at which the minimum of the reconstruction error is at-
tained. The minimum will then not be attained necessarily at a multiple of the sampling time.

In Figure 3 we display the trajectories obtained from simulating the estimated SINDy
model (7) and compare them to the trajectory of the (noiseless) true model (11), both ini-
tialized with the same initial condition as the true solution of (11). Note that the initial
value x(0) = 1 was not part of the (noisy) observations used for training. Remarkably, the
SINDy algorithm permits to recover the true solution for the observed time window even for
the noise-contaminated case with trajectories which are hardly discernible with the bare eye.
For longer times we will, however, observe increasing phase errors for the noisy case which
does not recover the true coefficients exactly (not shown for brevity). The same SINDy model
run with a close but non-optimal delay time of τ = 6, however, leads to strong phase and
amplitude errors of the SINDy-DDE model as seen in Figures 3(b) and 3(d).

The results presented for the simple one-dimensional toy model (11) suggest that the
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SINDy-delay Algorithm 1 described in Section 2 is able to recover the dynamics of a DDE
for relatively short data contaminated by moderate measurement noise at least on the time-
scale covered by the observations. Indeed, the reconstruction error is only 2.56 % (see Table
1) with only N = 200 data measurements, compared to standard applications of SINDy
with for instance with N = 105 data measurements for the Lorenz attractor example in [7,
Appendix 4.2]. In the next Section we show how to use the SINDy-delay method to uncover
the dynamics from a set of biological experiments where the underlying dynamical system is
not known.

4 Application to experimental data of gene expres-

sions in Pseudomonas aeruginosa

Zinc is an essential element in most living organisms and its proper dosage is vital for their
survival. In bacteria, zinc is typically bound to proteins and is responsible for both structural
and functional roles of those proteins [3]. Too small zinc concentrations impede on the biolog-
ical functioning of these proteins. Equally, if zinc is present in excess, it becomes toxic, mainly
by nonspecific bindings compromising the cellular integrity [17]. Therefore, intracellular zinc
concentration must be tightly regulated. This balance of cellular concentration (also called
homeostasis) is finely controlled by zinc import and export systems and their regulators.

Several strategies have evolved in P. aeruginosa to mitigate against strong fluctuations
of environmental zinc concentrations. In particular, numerous systems composed of trans-
membrane complexes act to maintain zinc homeostasis [35, 15]. Like all Gram negative
bacteria, P.aeruginosa possesses a double membrane separated by a particular compartment,
the periplasm as illustrated in Figure 4. Several complexes are involved in the uptake of
zinc in two stages: the first one allows transport of zinc from the outside into the periplasm,
the second allows for transport from the periplasm into the cytoplasm. In presence of zinc
excess, the associated import transporters are repressed, giving way to a reversed export sys-
tems. The most effective transporter is the efflux pump CzcCBA, which expels metal from
the periplasm or the cytoplasm directly out of the cell (cf. Figure 4) [33, 20]. The P-type
ATPase CadA on the other hand expels zinc from the cytoplasm to the periplasm [29]. (We
follow here the standard convention that proteins have names starting with a capital letter
whereas their associated genes have names all in small caps and are written in italics). Other
export systems have been described in this bacterium, such as CzcD or YiiP, but do not
appear to play a major role in zinc resistance [37, 16].

The expression of the proteins CadA is regulated by CadR that belongs to a family of tran-
scriptional regulators known to be constitutively located on the promoter sequences of their
target genes [4]. This configuration provides a fast response as follows: when the cytoplasmic
zinc concentration reaches a critical value, CadR binds the metal and immediately induces
cadA transcription [16]. The threshold of zinc concentration for the activation of this system
depends directly on the zinc affinity of CadR. This threshold has not yet been determined
in P. aeruginosa in the literature, but it may be estimated about 3 · 10−12 M, as observed
in other bacteria for ZntR, a CadR homolog [34]. Conversely, the efflux pump CzcCBA is
activated by the CzcRS TCS, where in presence of high periplasmic concentration of zinc,
the CzcS sensor activates the CzcR regulator which in turn binds the DNA, promoting the
activation of its own transcription and the czcCBA efflux pump, but also represses oprD porin
transcription [16]. OprD is the entry route for carbapenem antibiotics. Therefore, in presence
of zinc, CzcR render the bacterium resistant to both metal and antibiotics. Interestingly, the
CadA P-type ATPase appeared to be a key component for a full and timely induction of Czc-
CBA, suggesting a hierarchical expression in zinc export systems [16] as shown schematically
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(a) noiseless observations of x and ẋ
N = 4000, optimal τ = 7.
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(b) noiseless observations of x and ẋ
N = 4000, non-optimal τ = 6.
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(c) noisy observations of x
N = 200, γ = 0.02, optimal τ = 7.
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(d) noisy observations of x
N = 200, γ = 0.02, non-optimal τ = 6.

Figure 3: Comparison of the trajectories obtained from the SINDy model (7) (continuous curves;
online blue) and from the true model (11) (dashed curves; online red) for optimal and non-optimal
delay times, and for noiseless and noisy data points, respectively.
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Figure 4: Sketch of the biological model of the two compartment system (TCS) for the regulation
of zinc in Pseudomonas aeruginosa. A) Representation of the bacterium Pseudomonas aeruginosa.
The square represents the location of the two membranes in which the transport systems visible
in B are integrated in. B) Schematic representation of the two-steps dynamical response of the
proteins CadA (blue) and CzcCBA (red) after zinc induction, adapted from [16]. As soon as the
metal enters the cell, CadA is rapidly expressed by CadR, leading in a second phase to the induction
of CzcCBA via the CzcRS TCS. C) The delay differential equation describing the dynamics of
the Cad (blue color) and Czc (red color) systems after addition of 2 mM Zn obtained by the
SINDy-delay method.
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in Figure 4. In a zinc deficient medium, all import systems are expressed. Consequently,
zinc accumulates rapidly in the cytoplasm during a metal boost. This results in the closure
of the uptake machineries and at the same time the fast induction of CadA, which begins
to expel zinc from the cytoplasm to the periplasm, leading subsequently to the activation of
the CzcRS TCS and therefore of CzcCBA. This subsequently promotes a strong expulsion
of zinc, which in turn decreases CadR activity and hence CadA expression. To better char-
acterize and model this regulatory system, we seek a simplified two-dimensional differential
equation system, describing the dynamical induction of the two agents CadA and CzcCBA.
The following subsection describes the experimental set-up employed to obtain measurements
for CadA and CzcCBA.

4.1 Experimental design and results

We used the transcriptional fusions cadA::gfp and czcCBA::gfp described in [16]. This method
has the advantage of closely reflecting the expression of the gene of interest and naturally
yields time series of experimental data. To do so the green fluorescent protein (GFP) were
fused with the regulatory sequences of cadA or czcC genes, respectively. To investigate the
interaction between the proteins CadA and CzcCBA, we consider a wild type (wt) strain of P.
aeruginosa as well as mutants in which either CadA is not expressed (∆cadA) or CzcCBA is
not expressed (∆czcA). Strains were independently grown in a zinc deficient M-LB medium
as described in [16], for 2 hours 30 minutes before the addition of different concentrations
of zinc (in the form of ZnCl2). We perform experiments for various zinc concentrations
with 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5 mM, a range of zinc concentrations for which the
considered systems are fully induced. The fluorescence of cadA::gfp was measured for the wt
and the ∆czcA strains. Similarly, the fluorescence of CzcCBA::gfp was measured in the wt
and the ∆cadA strains. Fluorescent values were monitored every 5 minutes for 160 minutes
and normalized by the optical density at 600nm (OD600, a standard methodology which
permits to estimate the bacterial concentrations). This amounts to a short time series of 33
measurements per experiment. Each experiment is conducted three times and we report on
the averages over those three experiments. In the following time t = 0 corresponds to the
moment of the metal addition. For ease of exposition, fluorescence measurement are shifted
to start with a value of 0 at time t = 0.

Figure 5 shows the fusion measurements for the wild type and two mutants after adding
2mM of ZnCl2. In agreement with previous work [16], in the wt strain (see Figure 5a), the
CadA induction drops when CzcCBA begins to be expressed, i.e. several minutes after the
addition of zinc. However in the ∆czcA mutant we observe a continuous induction of CadA
during the time of the experiments (see Figure 5b). The fusion results also reveal a later
induction of CzcCBA in the ∆cadA strain compared to the wt strain (see Figure 5c).

4.2 SINDy-delay method to uncover CadA and CzcCBA sys-

tem dynamics

The dynamics and induction intensity of CadA and CzcCBA systems depend on several
factors, including intracellular (periplasmic and/or cytoplasmic) concentration of zinc, as well
as on the response velocity and the metal sensitivity of their respective regulators. Moreover,
experimental data obtained from transcriptional fusions are only proxies depending on GFP
synthesis and its stability. For simplicity, we ignore these complex interactions and instead
consider only two “boxes”, one signifying all the variables involved in CadA expression (blue
box in Figure 4) and one signifying those responsible of CzcCBA expression (red box in
Figure 4). This simplification implies a mathematical model with only CadA and CzcCBA
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Figure 5: Fluorescence measurements after addition of 2 mM ZnCl2 compared to the corresponding
mathematical delay differential equation (DDE) model (solid lines). The fluorescence intensity over
time is shown for the wt, ∆cadA and ∆czcA strains, containing the cadA::gfp (open circles; online
blue) or czcA::gfp (diamonds; online red) fusions. The values are normalized by the optical density
(OD600). Standard deviations of three independent measurements are shown. The mathematical
solutions, according to the SINDy selected model, are shown in solid lines.

expressions as dependent variables. We assume that the zinc concentration remains constant
during the induction experiment.

For the wild type bacteria (wt) we seek a model of the form

ẋwt(t) = f(xwt, ywt), ẏwt(t+ τwt) = g(xwt, ywt), (12)

where x(t) represents the fluorescence from cadA::gfp while y(t) represents czcA::gfp. This
form is motivated by the experimental data shown in Figure 5 where cadA::gfp experiences
significant changes within the first minutes whereas czcA::gfp remains nearly constant for a
significant time suggesting a delayed dynamics. For the mutant ∆czcA, which lacks expression
of czcA the dynamics is obtained by setting y = 0 in the above model for the wild type. We
obtain

ẋ∆cz(t) = f(x∆cz, 0). (13)

Similarly, for the mutant ∆cadA, which lacks expression of cadA the dynamics is obtained by
setting x = 0 in the above model for the wild type, and we obtain

ẏ∆ca(t+ τ∆ca) = g(0, y∆ca). (14)

We allowed here for a delay time τ∆ca 6= τwt accounting for the possibility that the delay
may depend on the presence of the various agents present in the regulatory process. We also
assume that x(t) = y(t) = 0 for t < 0 which corresponds to the natural assumption that
neither CadA (x) nor CzcCBA (y) are produced when no zinc has been added yet into the
growing medium, which could activate their expression (see Figure 4).

To determine the model (12)-(14), we apply the SINDy-delay method presented in Sec-
tions 2 for the fluorescence measurements of the expression kinetics experiments described
in Section 4.1. To estimate the functions f and g in (12) as well as the delay times from
the experimental data, we consider a library consisting of all monomials up to cubic order to
approximate (12)-(14). To search for a parsimonious model only few terms selected from the
library, we apply the sparsity constraints as detailed in Section 2 and search for the delay
times τ∆ca and τwt in the set [0, 5, . . . , 160] in units of minutes: we remove the less meaningful
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Zn Delays Coefficients for function x(t) (cadA::gfp) Coefficients for function y(t) (czcA::gfp) Error

[mM ] τwt τ∆ca
1 x y x2 xy y2 xy2 1 x y x2 xy E(τwt, τ∆ca)

0.5 20 25 370 -3.51·10−2 -3.70·10−2 1.14·10−6 0 1.69·10−6 0 118 1.61·10−2 0 0 -1.53·10−6 0.0328

1 25 35 317 0 0 -2.16·10−7 -3.55·10−6 0 1.14·10−10 180 5.30·10−3 -6.51·10−3 0 0 0.0711

1.25 30 45 316 0 0 -1.74·10−7 -2.56·10−6 0 7.90·10−11 162 0 -5.18·10−3 3.36·10−7 0 0.0666

1.5 25 55 216 0 -1.13·10−2 0 0 0 0 122 0 0 2.35·10−7 0 0.11

1.75 30 65 209 0 -1.04·10−2 0 0 0 0 112 0 0 3.46·10−7 0 0.0865

2 30 70 201 0 -9.08·10−3 0 0 0 0 117 0 0 4.28·10−7 0 0.0785

2.25 35 85 200 0 -8.48·10−3 0 0 0 0 134 0 0 4.10·10−7 0 0.0730

2.5 45 95 200 0 -6.54·10−3 0 0 0 0 129 1.04·10−2 0 0 0 0.0613

Table 2: Results of the SINDy-delay method for the various zinc concentrations. Terms from the
library function which were not selected for any zinc concentration are not represented.

terms of the library and stop the process when the minimum of the normalized cost function
C(Ξ)/C(0), which refers to equation (4), increases by more than 10 percents. Optimal delays
time are found by minimizing the function E(τwt, τ∆ca) reconstruction error corresponding to
(8).

This process is applied for all experiments with the various zinc concentrations. In Figure 6
we show results for the 2 mM induction of zinc. Figure 6(a) shows the increase of the
normalized cost function upon removal of both x and y components. Figure 6(b) shows the
reconstruction error E(τs) with a minimum error of 7.8% for τwt = 30 and τ∆ca = 70 minutes.
In particular, we obtain from the SINDy-delay methodology the following delay differential
equation model for a concentration of 2 mM of zinc,

ẋwt(t) = 201− 9.08 · 10−3 ywt, (15)

ẏwt(t+ τwt) = 117 + 4.28 · 10−7 x2wt (16)

and

ẋ∆cz = 201,

ẏ∆ca(t+ τ∆ca) = 117 (17)

with τwt = 30, τ∆ca = 70. In Figure 5, solutions of the DDE model (15)-(16) and of (17) are
plotted and compared with experimental data for 2 mM ZnCl2, which shows a high degree
of similarity with a reconstruction error of 7.85%. The complete results for all zinc concen-
trations tested (from 0.5 to 2.5 mM) are shown in Table 2. We remark that the coefficient of
the linear and quadratic terms in (15),(16), are of the order of 10−2 and 10−7, respectively;
although their coefficients are small, their presence is crucial. Such small coefficients are hard
to detect when employing standard thresholding procedures. This illustrates the advantage
of our method based to promote sparsity outlined in Remark 2.2.

DDE model accuracy and consistency We observe in Table 2 that for all zinc
concentrations the SINDy-delay method yields DDE models with reconstruction errors smaller
than 11%. The SINDy model matches the experimental data very well and is biologically
consistent for all ZnCl2 concentrations. This is notable given the very short length of the
experimental time series with N = 33 data. Remarkably, for moderate ZnCl2 concentrations
between 1.5 mM and 2.25 mM (emphasized in dashed lines in Table 2), a unified SINDy DDE
model arises which benefits from the sparsity feature, with only the terms 1,y and x2 selected,
allowing for a biologically consistent interpretation of the terms. Importantly, the signs of
the associated coefficients are consistent with the biological model: the coefficient associated
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(a) (b)

Figure 6: (a) Cost function C(Ξ) (normalized by C(0)) against removed monomials for fixed
optimal delays, τwt = 30 (open circles; online blue) and τ∆ca = 70 (diamonds; online red). The
vertical black line indicates the iteration number where the process is stopped. At iteration 5
the cost function has increased more than 10% for both components. (b) Reconstruction error
E(τwt, τ∆ca) showing a minimum value equal to 7.8 · 10−2 for τwt = 30 and τ∆ca = 70, indicated by
a red cross.

with the linear term in y in (15), which describes the influence of y (CzcCBA) on x (CadA),
is negative in agreement with the biological model where CzcCBA represses CadA. Similarly,
the coefficient associated with the x2 term in (16), which describes the influence of x (CadA)
on y (CzcCBA), is positive in agreement with the biological model where CadA accelerates
the expression of CzcCBA (12).

For low ZnCl2 concentrations smaller than 1.25 mM the SINDy models are not as sparse,
involving more terms than for the moderate concentrations (for instance, up to five functions
1, x, y, x2, y2 for x (CadA) at 0.5 mM of zinc), while for the highest considered ZnCl2 concen-
tration, the different term x is selected in place of x2. We also remark that the SINDy model
is likely to model the response of P. aeruginosa to a boost in zinc only for the time duration of
the experiment. Indeed, the SINDy models in Table 2 exhibit unphysical negative CadA and
CzcA concentrations for all considered ZnCl2 concentrations if a time larger than 800 minutes
would be considered (not shown here) in place of the time of 160 minutes considered in the
experiments. This suggests that the simplified two box model may be insufficient to capture
the impact of the induced stress for longer times, and additional components or mechanisms
need to be included in the modelling.

CadA is essential for maintaining a rapid expression of CzcCBA Consider the
range of zinc concentrations from 1.5 to 2.25 mM as emphasised with dashed lines in Table 2.
A remarkable observation is that the coefficients computed from the SINDy-delay method are
only weakly sensitive to the applied zinc concentration, with the exception of the delay time
τ∆ca, which increases linearly with the zinc concentration, as shown in Figure 7. This linear
increase of the delay time τ∆ca in the absence of CadA suggests that the protein CadA is
particularly necessary for a rapid zinc response and suggests that the positive effect of CadA
on the efflux pump is all the more important as the zinc concentration is high. The OD600
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Figure 7: Estimated delay times τwt, τ∆ca (in minutes) as a function of the zinc concentration (in
mM). Remarkably, we observe a linear increase as a function of the zinc concentration of the delay
time τ∆ca = α · [ZnCl

2
] with α = 37.1 min mM-1 (linear regression in dashed line with slope 37.1).

measurement allows the counting of cells independently of whether they are alive or dead.
Thanks to colony counting and quantification of cell viability at concentrations of 1.25 mM
and 2 mM ZnCl2 after 160 min of incubation (not displayed here for brevity), we observed
that the same number of living cells are detected, and hence this difference in delay under
different zinc concentrations cannot be attributed to a differential mortality between the
∆cadA and the wt strains. Biologically, this could reflect a reasonable mechanism whereby
the bacterium wants to react as quickly as possible to a stress regardless of its intensity.

5 Conclusion

In this paper, we extended the SINDy methodology introduced in [7] to the case of delay
differential equations with a focus on short and noise-contaminated data. To construct the
temporal derivatives from noisy measurements we employed a simple denoising procedure
based on polynomial regression (Remark 2.1). We further introduced a stopping criterion
to promote sparsity which avoids having to introduce sensitive threshold parameters (Re-
mark 2.2). To estimate the temporal delay we applied a bilevel optimization whereby first
standard SINDy method is applied for a range of fixed delay times, and then subsequently
the optimal delay time is determined by the delay time yielding the minimal reconstruction
error. We showed that our method is able to reliably uncover the DDE from noisy data
obtained from a known toy model.

Applying the SINDy-delay methodology to model the dynamics of the Pseudomonas
aeruginosa zinc response from a limited amount of measurement highlighted the subtle inter-
actions between the Cad and Czc regulatory systems. In particular, the SINDy DDE model
revealed the importance of CadA on CzcCBA induction for minimizing the time required
for the bacterium to respond effectively to a sudden zinc excess. The compatibility between
the results of the SINDy DDE models and the biological data supports the hypothesis that
the dynamical mechanism of resistance to moderate boosts of zinc can be explained by the
interaction of only two systems, namely CadA and CzcCBA. Our results motivate further
investigations of this dynamics. The present work was performed over 160 minutes after the
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metal induction and illustrates only the initial establishment of resistance. Additional exper-
imental data on longer times, which require continuous cultures in a chemostat and a more
sensitive method to monitor the cadA and czcCBA transcriptional expressions would make
it possible to compare these mathematical predictions with the biological situation.
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