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We perform a stochastic model reduction of the Kuramoto-Sakaguchi model for finitely many coupled phase oscillators
with phase-frustration. Whereas in the thermodynamic limit coupled oscillators exhibit stationary states and a constant
order parameter, finite-size networks exhibit persistent temporal fluctuations of the order parameter. These fluctuations
are caused by the interaction of the synchronized oscillators with the non-entrained oscillators. We show that the
collective effect of the non-entrained oscillators on the synchronized cluster can be approximated by a Gaussian process.
This allows for an effective closed evolution equations for the synchronized oscillators driven by a two-dimensional
Ornstein-Uhlenbeck process. Our reduction reproduces the stochastic fluctuations of the order parameter and leads to
a simple stochastic differential equation for the order parameter.

I. INTRODUCTION

Ever since Huygen’s observation of two pendulum clocks,
mounted on the same wall a short distance apart, ending up
swinging in anti-phase, the phenomenon of collective be-
haviour and synchronisation of weakly coupled oscillators
has fascinated scientists. Synchronization has been observed
in a diverse range of natural and engineered systems1–3, in-
cluding in pace-maker cells of circadian rhythms4, networks
of neurons5, in chemical oscillators6,7 and in power grid
systems8.

The celebrated Kuramoto model of sinusoidally cou-
pled phase oscillators has served as a rich model to study
synchronisation1,2,9–14. The Kuramoto model was extended
to the Kuramoto-Sakaguchi model15 to include the effect
of time-delayed or phase-frustrated coupling which was ob-
served in numerous real-world contexts16, including in ar-
rays of Josephson junctions17–19, in power grids20 and in
seismology21,22. Apart from the usual transition from an inco-
herent state at low coupling strength to synchronisation upon
increasing the coupling strength, the Kuramoto-Sakaguchi
model exhibits a plethora of dynamical behaviours including
bi-stability of incoherence and partial synchronisation, tran-
sition from coherence to incoherence with increasing cou-
pling strength23,24, chaotic dynamics25 as well as chimera
states26–28.

The possible high dimensionality of networks of oscillators
inhibits an understanding of the underlying dynamic mecha-
nisms which give rise to this rich behaviour. Scientists have
therefore looked at model reductions of the Kuramoto model
and of the Kuramoto-Sakaguchi model. Most methods are
restricted to the thermodynamic limit of infinitely many os-
cillators. In this limit Kuramoto and Sakaguchi established a
mean-field theory which determines the order parameter and
the non-zero rotation frequency of the synchronised cluster
via a self-consistency relationship15. Similarly, the celebrated
Ott-Antonson ansatz29 can be employed to obtain a determin-
istic evolution equation for the order parameter23,24. Real
world networks, however, are of finite size, and in finite-size

a)wyue8667@uni.sydney.edu.au
b)georg.gottwald@sydney.edu.au

systems the onset of synchronisation occurs typically not at
the critical coupling strength predicted by the thermodynamic
limit. While in the thermodynamic limit, the order parameter
asymptotically in time approaches a constant value, in finite-
size networks the order parameter exhibits persistent temporal
fluctuations. Furthermore, finite-size networks exhibit a sin-
gularity in the variance of the order parameter at the onset
of the transition to synchronisation with a well-defined finite
size scaling30–32. To overcome the restriction of the thermo-
dynamic limit and to tackle the case of finite-size networks, a
collective coordinate approach33–35 was applied to study the
Kuramoto-Sakaguchi model for finitely many oscillators and
derive an evolution equation for the order parameter36. It was
established that the order parameter and the dynamics of the
synchronised cluster is markedly influenced by the dynamics
of the non-entrained rogue oscillators. Describing the effect of
the rogue oscillators by their average, a deterministic reduced
evolution equation for the entrained oscillators was derived.
This allowed for the estimation of the onset of synchronisa-
tion and the determination of the average behaviour of the or-
der parameter.

Whereas our previous work captured the averaged effect
of the rogue oscillators on the synchronised oscillators, in
this work we set out to quantitatively describe the fluctua-
tions around this average behaviour and capture the effective
stochastic dynamics of the synchronised phase-oscillators and
the order parameter. We show how the thermodynamic limit
is approached for increasing number of oscillators. In par-
ticular, we will derive a closed set of equations for the en-
trained synchronized oscillators where the effect of the non-
entrained rogue oscillators is modelled by coloured noise, the
variance of which decreases as the number of oscillators in-
creases. This implies, as we will show, a stochastic differen-
tial equation (SDE) for the order parameter. SDEs driven by
Brownian motion for the order parameter were recently pos-
tulated and determined using a data-driven approach37. We
show here that the SDEs are in fact driven by coloured noise.

The paper is organised as follows. In Section II we intro-
duce the Kuramoto-Sakaguchi model. Section II A reviews
the mean-field theory for the Kuramoto-Sakaguchi model and
Section II B presents numerical simulations of the Kuramoto-
Sakaguchi model illustrating its stochastic order parameter
fluctuations. We develop our stochastic model reduction in
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Section III and illustrate how it captures the observed statis-
tics of the full Kuramoto-Sakaguchi model. We further use the
stochastic model equation to derive a stochastic differential
equation for the order parameter. We conclude in Section IV
with a discussion.

II. THE KURAMOTO-SAKAGUCHI MODEL

The Kuramoto-Sakaguchi model1,9,15

θ̇i = ωi +
K
N

N

∑
j=1

sin(θ j−θi−λ ), i = 1, . . .N. (1)

is a classic paradigmatic model describing the dynamics of N
sinusoidally globally coupled oscillators with phases θi under
global phase-frustration λ with coupling strength K. Each os-
cillator is equipped with an intrinsic frequency ωi which is
drawn from a specified distribution g(ω).

The Kuramoto-Sakaguchi model (1) displays a transition to
synchronisation as the coupling strength K increases. For low
values of K, the system is in an incoherent state in which each
oscillator evolves approximately with their own intrinsic fre-
quency. As the coupling strength K increases, some of the
oscillators become synchronised, oscillating with a common
frequency and with their phases staying close to one another.
When K increases further, more and more oscillators become
synchronised, until eventually global synchronisation occurs.
The non-zero phase-frustration λ 6= 0 induces a collective ro-
tation of the synchronised cluster with a non-zero frequency
Ω in the rest frame, as opposed to the Kuramoto model which
supports stationary synchronised clusters. We remark that for
λ = 0 and uniform intrinsic frequency distributions a first-
order phase transition occurs38.

The collective behaviour can be described by the mean-field
variables r and ψ with

r(t)eiψ(t) =
1
N

N

∑
j=1

eiθ j(t). (2)

The degree of synchronisation is quantified by the order pa-
rameter r̄ with

r̄ = lim
T→∞

1
T

∫ T

0
r(t)dt.

Perfect phase synchronisation with θi = const for all oscilla-
tors i implies r = 1 and r & 0 indicates that phases are spread
out with r̄ ∼ 1/

√
N indicating incoherence.

A. Classical mean-field theory

Sakaguchi and Kuramoto15 developed a mean-field theory
for the mean frequency Ω of the synchronzied cluster and the
order parameter r. Moving into the frame of reference ro-
tating with the cluster mean frequency Ω = Ω(K) and setting

the mean-field phase variable ψ = 0, the Kuramoto-Sakaguchi
model (1) is expressed as

θ̇i(t) = ωi−Ω−Kr sin(θi +λ ). (3)

Each oscillator θi only couples to the other oscillators via the
mean-field in the form of r and Ω.

From (3) one can readily identify the oscillators which form
the synchronised cluster and the rogue oscillators which are
not entrained: The former ones have frequencies |ωi−Ω| ≤
Kr for which (3) has stationary solutions with

θi = arcsin
(

ωi−Ω

Kr

)
−λ .

The synchronized oscillatros rotate with the collective mean
frequency Ω. In contrast, the non-entrained rogue oscillators
have frequencies |ωi−Ω|>Kr and satisfy and Adler equation

θ̇i = v(θi;ωi), (4)

with frequency

v(θi;ωi) = ωi−Ω−Kr sin(θi +λ ). (5)

In the thermodynamic limit N → ∞, the phases can be de-
scribed by a probability density function ρ(θ , t;ω) satisfying
the continuity equation

∂ρ

∂ t
+

∂

∂θ
(ρv) = 0. (6)

Entrained oscillators which form the synchronised cluster
are captured by the stationary probability density function

ρ(θ ;ω) = δ (θ − arcsin
(

ω−Ω

Kr

)
+λ ). (7)

The non-entrained rogue oscillators are captured by the sta-
tionary probability density function

ρ(θ ;ω) =
C(ω)

v(θ ;ω)
=

C(ω)

ω−Ω−Kr sin(θ +λ )
, (8)

with normalization constant C(ω). In the thermodynamic
limit the order parameter

r =
∫

∞

−∞

∫ 2π

0
eiθ

ρ(θ , t;ω)g(ω)dθdω,

for the mean-field Kuramoto-Sakaguchi equation (3) is then
given by

reiλ =
∫

|ω−Ω|≤Kr

(√
1− (ω−Ω)2

K2r2 + i
ω−Ω

Kr

)
g(ω)dω

+ i
∫

|ω−Ω|>Kr

(
ω−Ω

Kr
− ω−Ω

Kr

√
1− K2r2

(ω−Ω)2

)
g(ω)dω.

(9)
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Separating the real and imaginary parts of (9), we arrive at

r cosλ =
∫

|ω−Ω|≤Kr

√
1− (ω−Ω)2

K2r2 g(ω)dω (10)

r sinλ =
∫

|ω−Ω|≤Kr

ω−Ω

Kr
g(ω)dω

+
∫

|ω−Ω|>Kr

(
ω−Ω

Kr
− ω−Ω

Kr

√
1− K2r2

(ω−Ω)2

)
g(ω)dω.

(11)

These are self-consistency relations for the mean-field vari-
ables r and Ω which can be numerically evaluated for any
given intrinsic frequency distribution g(ω), coupling strength
K and phase frustration parameter λ . In the following we de-
note the solution of the order parameter of the self-consistency
relation by r∞.

B. Numerical results for finite N

We now present results of numerical simulations of the
Kuramoto-Sakaguchi model (1), illustrating finite-size effects.
We employ a 4th order Runge-Kutta(RK4) method with time
step dt = 0.05. Initial conditions are chosen randomly from
the interval [0,2π]; to eliminate transient behaviour we dis-
card a transient period of t0 = 105 time units. Statistics such as
means and variances are computed from time series of length
tmax = 1 · 105. In the following we fix the phase frustration
parameter to λ = π/4 and consider a Gaussian distribution of
the intrinsic frequencies with mean 0 and variance 1. To avoid
sampling effects which may lead to small cluster nucleation39

we consider here equiprobable intervals between the N intrin-
sic frequencies40. Unless specified otherwise we set K = 3.

Figure 1a shows a snapshot of the phases for N = 160.
The phases are labelled according to their intrinsic frequen-
cies such that the oscillator with the most negative native fre-
quency is assigned the label i = 1 and the one with the largest
frequency the label i = N. One can see clearly the synchro-
nised cluster with frequencies close to the mean frequency Ω,
and the non-entrained rogue oscillators with more extreme in-
trinsic frequencies. Note that due to the non-zero phase frus-
tration λ the synchronised cluster is not centred around the
oscillators closest to the mean of their respective intrinsic fre-
quencies as is the case for the standard Kuramoto model with
λ = 0. To determine the synchronised cluster and its comple-
ment, the non-entrained rogue oscillators, we define the effec-
tive frequency of each oscillator,

ω̂i =
〈
θ̇i(t)

〉
t ,

where the angular brackets denote a temporal average. Those
oscillators with approximately the same effective frequencies
ω̂i are considered to form the synchronised cluster C of size
Nc, and the remaining oscillators are considered to be within
the set of non-synchronised rogue oscillators R with size Nr.
Figure 1b shows the effective frequencies.

(a)

(b)

FIG. 1: Snapshot of the phases θi (a) and effective
frequencies ω̂i (b) for the Kuramoto-Sakaguchi model (1)
with N = 160 oscillators and phase frustration λ = π

4 at
coupling strength K = 3 with a Gaussian intrinsic frequency

distribution with zero mean and unit variance. Circles (online
blue) denote oscillators entrained in collective synchronised

dynamics. Crosses (online red) denote the non-entrained
rogue oscillators.

The effect of the non-collective behaviour of the rogue os-
cillators induces a seemingly stochastic behaviour of the order
parameter r shown in Figure 2. We show the temporal evolu-
tion of the order parameter from a random initial condition
at t = 0; after an initial transient the order parameter exhibits
persistent fluctuations around a mean value with a constant
variance of 4.16×10−4. The size of the fluctuations is N de-
pendent and we expect that for N → ∞ the variance of the
fluctuations approaches zero.

To investigate the effect of finite system size, we
simulate the system at increasing system size N =
{40,80,160,320,640,1280,2560} with other settings kept
the same. Figure 3a shows the distribution of r(t) for varying
system size. As N increases, the distribution of r(t) becomes,
as expected, narrower with decreasing variance and its mean
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FIG. 2: Time series of the order parameter r(t) from a single
simulation of the Kuramoto-Sakaguchi model (1) with

N = 10,000 and N = 160 oscillators, starting from a random
initial condition. The dashed horizontal line indicates the

stationary value r∞ = 0.766 of the corresponding
thermodynamic limit, estimated by solving the

self-consistency relations (10)-(11). All parameters are the
same as in Fig. 1.

value approaches a fixed value r̄∞ = 0.766, as shown in Fig-
ures 3b-c. We find that r̄− r∞ ∼ N−0.859. The variance of r(t)
decreases towards 0 as N increases with Var[r]∼N−0.976. The
scaling of the variance suggests an underlying Central Limit
Theorem which would imply a scaling of the variance with
1/N.

Figure 4 shows the well-known transition from incoherence
to synchronisation for increasing coupling strength K for a
fixed number of oscillators N = 160. Figure 4a shows the
order parameter r̄ with the well known second order phase
transition for Gaussian intrinsic frequencies from incoherence
with r̄ ∼ 1/

√
N to partial synchronisation at Kc = 1.93, after

which the synchronised cluster continues to grow in size until
all oscillators become synchronised at Kg = 8.34. Figure 4b
shows the variance of the order parameter as a function of
the coupling strength. The almost constant variance for small
coupling strength around Var(r) = 1.35×10−3 corresponds to
the almost random distribution of the N uncoupled oscillators.

(a)

(b)

(c)

FIG. 3: (a): Empirical distribution of the order parameter r(t)
obtained from a single simulation of the

Kuramoto-Sakaguchi model (1) at different system sizes N.
(b): Mean value of r(t) for different system sizes N. The

dashed line indicates the value at the corresponding
thermodynamic limit, r̄∞. (c): Variance of r(t) for different

system sizes N. The red line represents the best-fit suggesting
a scaling law of N−0.976. All other parameters are the same as

in Fig. 1.
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The variance exhibits a singularity at K = Kc and approaches
zero for K ≥ Kg. The singular behaviour of the variance is
a well-studied phenomenon and known under the name of
anomalous enhancement of fluctuations30,31,41–44. Figure 4c
shows the cardinalities of the synchronised cluster C and the
set of rogue oscillators R, labelled Nc and Nr, respectively,
with Nc+Nr =N. For K <Kc all oscillators are rogue whereas
for K > Kg all oscillators are synchronised. The synchronised
cluster steadily grows for increasing Kc < K < Kg.

III. STOCHASTIC MODEL REDUCTION

The numerical results presented in Section II B suggest that
the non-entrained rogue oscillators exert a stochastic forcing
on the synchronised cluster. To develop a stochastic approx-
imation of the Kuramoto-Sakaguchi model we hence aim to
establish a closed evolution equation for the phases of the syn-
chronised oscillators in which the driving force exerted by the
rogue oscillators is parametrised by a stochastic process. The
challenge is how to describe this stochastic process. We be-
gin by separating the coupling terms which only involve the
synchronised oscillators and those which contain the rogue
oscillators, and write the Kuramoto-Sakaguchi model (1) for
i ∈ C as

θ̇i = ωi−Ω+
K
N

(
∑
j∈C

sin(θ j−θi−λ )+ ∑
j∈R

sin(θ j−θi−λ )

)
.

The sum over the rogue oscillators can be written as

1
N ∑

j∈R
sin(θ j−θi−λ )

=
1
N ∑

j∈R
sin(θ j−ψc +λ +ψc−θi−2λ )

= cos(ψc−θi−2λ )S(t)+ sin(ψc−θi−2λ )C(t),

where we introduced the mean phase of the synchronised clus-
ter ψc and where we define

S(t) =
1
N ∑

j∈R
sin(θ j−ψc +λ ) =

Nr

N
rr sin(ψr−ψc +λ )

(12)

C(t) =
1
N ∑

j∈R
cos(θ j−ψc +λ ) =

Nr

N
rr cos(ψr−ψc +λ ),

(13)

where we defined the mean-field variables pertaining to the
synchronized oscillators in C

rceiψc =
1

Nc
∑
j∈C

eiθ j (14)

and those pertaining to the rogue oscillators in R

rreiψr =
1
Nr

∑
j∈R

eiθ j . (15)

(a)

(b)

(c)

FIG. 4: Transition from incoherence to synchronisation of
the Kuramoto-Sakaguchi model (1) with increasing coupling
strength K with N = 160 for a Gaussian intrinsic frequency
distribution g(ω) with mean zero and variance 1. (a): Order

parameter r̄. (b): Variance of the order parameter,
quantifying the size of fluctuations. (c): Number of entrained
oscillators Nc, which are part of the collective synchronised
cluster (circles, online blue) and number of non-entrained

rogue oscillators Nr (crosses, online red). Shown are relative
numbers. The vertical lines mark the onset of partial
synchronisation at Kc = 1.93 and the onset of global

synchronisation at Kg = 8.34.
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We remark that the particular choice of writing the trigono-
metric functions in (12)-(13) was motivated by the form of the
invariant density of the rogue oscillators (8) and allows for a
convenient averaging (cf. (17)-(19)). The overall influence of
the rogue oscillators on each synchronised oscillator θi is now
captured by S(t) and C(t), while the remaining terms are ex-
pressed entirely in terms of the synchronised oscillators, and
we arrive at

θ̇i = ωi−Ω+
K
N ∑

j∈C
sin(θ j−θi−λ )

+K cos θ̃i S(t)+K sin θ̃i C(t), (16)

where we defined for compactness

θ̃i = ψc−θi−2λ .

We first establish the average effect of the rogue oscillators
and calculate the means 〈S〉 and 〈C〉 of the rogue oscillator
drivers S(t) and C(t). We follow here the averaging proce-
dure proposed in our previous work36. Envoking ergodicity of
the process we can equate the temporal averages 〈S〉 and 〈C〉
by averages over the stationary density function of the rogue
oscillators (8). Averaging equation (12) for S(t) over the in-
variant densities of the rogue oscillators (8) becomes

〈S〉t ≈
1
N ∑

j∈R

∫ 2π

0
sin(θ j−ψc−λ )ρ(θ j;ω)dθ j

=
1
N

cos(ψ−ψc) ∑
j∈R

k j, (17)

where

k j =
ω j−Ω

Kr

(
1−

√
1− K2r2

(ω j−Ω)2

)
, (18)

and ψ denotes the overall phase of all oscillators in the frame
of reference rotating with the mean frequency Ω. Similarly,
averaging (13) yields

〈C〉t =−
1
N

sin(ψ−ψc) ∑
j∈R

k j ≈ 0, (19)

since the overall phase ψ and the phase of the synchronized
cluster ψc are close for sufficiently large coupling strength. In
practice we estimate 〈S〉t and 〈C〉t from a long time trajectory.
We confirmed that this is a good estimate for the thermody-
namic limit.

Figure 5 shows the empirical histogram of S and C for
N = 160 at K = 3 obtained from a single long simulation of
the Kuramoto-Sakaguchi model (1). The means are well ap-
proximated by the averaging procedure36 described above (cf
(17) and (19)). However, S(t) and C(t) experience significant
fluctuations. It is clearly seen that the distribution of the fluc-
tuations is Gaussian. In Figure 6 we show that the variance of
S and of C scales approximately as 1/N. This suggests that
the scaled mean-subtracted variables

ξt =
√

N (S(t)−〈S〉t)+o(
1√
N
)

ζt =
√

N (C(t)−〈C〉t)+o(
1√
N
) (20)

are Gaussian processes that are defined entirely in terms of
their mean and covariance functions

Rab(τ) = cov(a(t),b(t + τ)), (21)

for a and b being either ξ or ζ . Indeed, Figure 7 shows that
correlations decay in time with increasing system size N, and
that the covariance functions of the scaled variables ξt and
ζt converge in the limit of N → ∞. Note that the covariance
functions of ξt and ζt do not scale with N. This allows us to
approximate ZKS = (ξt ,ζt)

T as a two-dimensional Ornstein-
Uhlenbeck process with

dZ = (−ΓZ +ϒZ)dt +ΣdBt (22)

with two-dimensional Brownian motion Bt = (W1,W2) and di-
agonal matrix Γ = γ I and skew-symmetric rotation matrix ϒ

with entries υ12 = −υ21 = υ and υ11 = υ22 = 0 and a sym-
metric diffusion matrix Σ with entries σi j for i, j = 1,2. The
parameters of the Ornstein-Uhlenbeck process are determined
such that its mean is zero and its covariance function

R(OU)(τ) = 〈e−(Γ−ϒ)τ Z0ZT
0 〉OU, (23)

where the Z0 are random variables drawn from the station-
ary density of the OU process and the angular brackets 〈·〉OU
denote the average over that density, matches the observed
covariance function (21) of ZKS = (ξt ,ζt) associated with the
full deterministic Kuramoto-Sakaguchi model. We perform a
nonlinear least-square optimisation minimising the objective
function

E(γ,υ ,Σ) = ∑
a,b

∫ tmax

tmin

||Rab(t)−R(OU)
ab (t)||2dt

+β

(
||Rab(0)−R(OU)

ab (0)||2
)
,

where the sum goes over all entries of the covariance ma-
trix. We choose β = 1,000 to enforce that the variances of
S and C are reproduced. Figure 8 shows the four entries of
the covariance matrix of ZKS = (ξt ,ζt) together with the best
fit of an OU process. The fit is significantly better for small
times τ . We remark that the Kuramoto-Sakaguchi model is de-
terministic and hence the derivatives of the covariance func-
tions Rξ ξ (τ) and Rζ ζ (τ) are zero at τ = 045. This feature
cannot be reproduced by the stochastic Ornstein-Uhlenbeck
process which supports covariance functions that are non-
differentiable at τ = 0; this suggest a lower integration bound
tmin 6= 0. We choose here tmin = 0.5 and tmax = 2.5.

The effective stochastic dynamics of S(t) and C(t) are gen-
erated by the weak chaoticity of the non-entrained rogue
oscillators46,47. We show in Figure 9 typical trajectories of
rogue oscillators. The dynamics of the weakly chaotic rogue
oscillators is characterized by a nearly periodic motion (in-
deed under the assumption of constant mean-field variables r
and ψ the dynamics of each rogue oscillator is approximately
governed by the Adler equation (4)). Note that the rogue oscil-
lators closest to the synchronized cluster evolve slowly, almost
aligned with the synchronized cluster, for long periods inter-
rupted by fast slips. The interaction terms (12) and (13) hence
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FIG. 5: Empirical histogram of S(t) and C(t) obtained from a
single trajectory of the Kuramoto-Sakaguchi model (1) with

N = 160. The continuous curve (online red) shows the
corresponding Gaussian best fit.

constitute sums of nearly periodic functions of time with ran-
dom initial phases. It is well known that a sum of many
trigonometric functions with uncorrelated random initial con-
ditions approximates a Gaussian processes48–50. Hence the
mechanism for the deterministic generation of diffusive be-
haviour is less a matter of the time-scale separation between
faster chaotic rogue oscillators and slower synchronized oscil-
lators (i.e. homogenization), but instead it is given by a weak
coupling of the synchronized oscillators to many uncorrelated
rogue oscillators.

A. Numerical Verification of the Stochastic Reduced Model

We now show that the fluctuations of the order parameter as
observed in Figure 2 can be captured by the closed stochastic
evolution equation for the entrained oscillators θi with i ∈ C ,
established in the previous Section which we summarize here
as

dθi =
[
ωi−Ω+

K
N ∑

j∈C
sin(θ j−θi−λ )

+K cos θ̃i (〈S〉t +
1√
N

ξt)

+K sin θ̃i (〈C〉t +
1√
N

ζt)
]
dt, (24)

where ξt and ζt are the components of a 2-dimensional OU
process governed by

dξt =−γξt dt +υζt dt +σ11dW1 +σ12dW2

dζt =−γζt dt−υξt dt +σ21dW1 +σ22dW2. (25)

We remark that in the thermodynamic limit N→∞ we recover
the deterministic evolution equation derived in36. We simulate
this system using an Euler-Maruyama integrator with a time
step of dt = 0.01.

We can now establish expressions for the order parameters
associated with the stochastic reduced system (24)-(25). The
order parameter rc and the mean phase ψc can be directly de-
termined from simulations of (24)-(25). The full order param-
eter r can be expressed as

reiψ =
Nc

N
rceiψc +

Nr

N
rreiψr . (26)

FIG. 6: Scaling of the variance of S and C with varying
system size N as calculated from a single trajectory of the
Kuramoto-Sakaguchi model (1). The continuous line is a

linear best fit indicating a scaling with N−0.977 and N−0.975

for S and C, respectively.

FIG. 7: Entry Rξ ξ (τ) of the covariance function of
ZKS = (ξ (t),ζ (t)) obtained from a single trajectory of the

Kuramoto-Sakaguchi model (1) for different system sizes N.



8

FIG. 8: Covariance functions of ξ (t) and ζ (t) of the
Kuramoto-Sakaguchi model (1) with N = 160 (continuous

lines, online blue), together with the covariance function of a
fitted two-dimensional Ornstein-Uhlenbeck process (dashed

lines, online red).

Using the definitions for S and C (12)-(13) which imply

(C+ iS)e−iλ =
Nr

N
rr ei(ψr−ψc),

we can express (26) in terms of the complex variable Zt =
C(t)+ iS(t), where we treat Zt now as a complex valued ran-
dom variable, and obtain

r(t) =
∣∣∣∣Nc

N
rc(t)+Zt e−iλ

∣∣∣∣ . (27)

We separate the mean part and the fluctuations of Zt accord-
ing to

Zt =C(t)+ iS(t) = 〈Z 〉+ 1√
N

Z ′
t

with 〈Z 〉= 〈C〉+ i〈S〉. The random variable Z ′
t is generated

from the OU process (25) via the definition (20).
Note that this equation for r is only an approximation as

we require r(t) ≤ 1 for all times t. The variance of the per-
turbing Ornstein-Uhlenbeck process Z ′

t /
√

N is much larger
than that associated with the synchronised cluster, which we
numerically verify as Var(rc) ≈ 1.41× 10−5 and Var(rr) ≈
6.5×10−3. This suggests that in the equation (27) for the or-
der parameter r(t) the stochasticity of rc, as established above,
can be neglected and we can approximate rc ≈ r̄c = const and
write

r(t) =
∣∣∣∣ρ̄c +

1√
N

Z ′
t e−iλ

∣∣∣∣ , (28)

with complex

ρ̄c =
Nc

N
r̄c + 〈Z 〉e−iλ . (29)

Figure 10 shows the empirical histograms of the order param-
eter rc pertaining to the synchronized oscillators as well as the

FIG. 9: Top: Typical trajectories of rogue oscillators obtained
from a single trajectory of the Kuramoto-Sakaguchi model

(1) for N = 160 including the rogue oscillators with the native
frequency closest to that of an entrained oscillator with index

i = 117 and the rogue oscillator with the largest intrinsic
frequency with index i = 159. Bottom: Zoom into a shorter

time window for the rogue oscillators which are closest to the
synchronized cluster showing their weakly chaotic nature.

total order parameter r for all oscillators when simulated using
the full Kuramoto-Sakaguchi model (1) with N = 160 oscil-
lators and when estimated by the reduced stochastic system
(24)-(25) using (14) and (27) for the associated order param-
eters; we remark that results using the approximation (28) for
the associated order parameter lead to results indistinguish-
able by eye. We further show the histogram of the order pa-
rameter rc which only takes into account the entrained syn-
chronized oscillators. It is seen that our stochastic reduction
captures the observed fluctuations for both rc(t) and r(t) very
well. We remark that the histograms are not distinguishable
by eye if the order parameter is calculated by an actual time
trajectory of rc(t) or by its constant mean r̄c (cf. (27) and
(28)).

Noting that the stochastic perturbations are small we can
approximate further and write

r(t) = |ρ̄c|+
1√
N

Real[
ρ̄c

|ρ̄c|
e−iλ Z ′

t ], (30)
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which is equivalent to the following evolution equation for the
order parameter

dr =
1√
N

Real[
ρ̄c

|ρ̄c|
e−iλ dZ ′

t ] (31)

with

r(0) = |ρ̄c|, Z ′(0) = 0. (32)

We remark that long-time solutions of (31) generate empirical
histograms undistinguishable by eye from those presented in
Figure 10. Note that the order parameter is driven by coloured
noise in (31). This is in contrast to Snyder et al37 who pos-
tulated Brownian motion as the driving noise. In Figure 11
we show the time evolution of the order parameter rc(t)
computed from simulations of the full Kuramoto-Sakaguchi
model (cf. Figure 2) and of our reduced stochastic system
(24)-(25). It is seen that the qualitative smooth character
of the fluctuations observed in the deterministic Kuramoto-
Sakaguchi model (1) is reproduced by our stochastic system
which is driven by coloured OU noise.

To further probe the ability of the reduced stochastic model
(24)-(25) to capture the collective dynamics of the entrained
synchronized oscillators we show results for the fluctuations
of the entrained oscillators around the mean phase of the syn-
chronized cluster, θi−ψc for i ∈ C . These fluctuations are
Gaussian for all entrained oscillators as shown in Figure 12. It
is seen that our SDE very well describes entrained oscillators,
such as those with indices i = 1 and i = 50, but the degree of
approximation is less good for those entrained oscillators at
the edge of the cluster with index i = 115. In Figure 13 we
show the mean and the variance of θi−ψc for all i ∈ C esti-
mated from a long simulation of the full Kuramoto-Sakaguchi
model (1) and of the reduced stochastic model (24)-(25). It
is seen that the mean is very well recovered by the reduced
stochastic model. The variance is very well captured for os-
cillators with an index i that is sufficiently small to ensure that
their intrinsic frequency is not too close to that of the closest
rogue oscillator. For the simulations we show in Figure 13
the index of the first rogue oscillator is i = 117 for the full
Kuramoto-Sakaguchi model. The entrained oscillator with
index i = 116, i.e the oscillator on the edge of the synchro-
nized cluster, is fully entrained in the Kuramoto-Sakaguchi
model. However, for the approximate stochastic model (24)-
(25) the oscillator with index i = 116 experiences rare fast
random slips between long periods of entrainment (of the or-
der of 1,000 time units on average). The rare and fast slips
do not affect the mean which is still close to the mean corre-
sponding to the Kuramoto-Sakaguchi model, but the variance
is much higher with a value of 0.012 (not shown in Figure 13
where we only show oscillators with index i≤ 115).

B. Approximation by Brownian motion: Homogenization
results

A valid question is if one may model the effect of the rogue
oscillators by Brownian motion instead of the more complex

FIG. 10: Comparison of the empirical histograms for rc (top)
and r (bottom) obtained from a single trajectory of the

Kuramoto-Sakaguchi model (1) for N = 160 and from the
dynamics of the reduced stochastic model (24) driven by an
OU process. All other parameters are the same as in Fig. 1.

FIG. 11: Temporal evolution of the order parameter rc(t).
Shown are results obtained from the full

Kuramoto-Sakaguchi model (1) (online blue), the reduced
stochastic model (24)-(25) driven by an OU process (online

red) and from the Brownian motion approximation (39)
(online orange). All other parameters are the same as in

Fig. 1.
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FIG. 12: Empirical density of θi−ψc for the entrained
oscillators with indices i = 1, i = 50 and i = 115. Shown are

results for the full Kuramoto-Sakaguchi model (1) for
N = 160 and for the reduced stochastic model (24)-(25). All

other parameters are the same as in Fig. 1.

Ornstein-Uhlenbeck equation and describe the effective dy-
namics of the entrained synchronized oscillators by a single
system of SDEs37?

In order to derive such a reduced SDE driven by Brownian
motion we employ the method of homogenization. In par-
ticular, we treat the fluctuations, described by the Ornstein-
Uhlenbeck process (25), as a fast process compared to the
slow dynamics of the entrained synchronized oscillators, de-
scribed by (24). Stochastic homogenization theory allows
to derive an effective SDE for the slow variables (see, for
example,50,51).

We consider the fast-slow system

ẋ = a(x)+ ε
−1b(x)v(y) (33)

dy = ε
−2g(y)dt + ε

−1dB, (34)

where x ∈ Rd and y ∈ Rq and B is q dimensional Brownian
motion. The functions

a :Rd→Rd , b :Rd→Rd×m, v :Rq→Rm, g :Rq→Rq,

and the drift and diffusion terms in the fast dynamics allow for
a unique stationary density of the fast variables ρ∞(y). We as-
sume a centering condition

∫
v(y)ρ∞(y)dy = 0. Note that our

system (24)-(25) falls into this class of systems with x denot-
ing the synchronized oscillators with d = Nc and y denoting
the two-dimensional OU process with q = 2.

Homogenisation allows to find a limiting stochastic differ-
ential equation (SDE) for the slow variables in the limit ε→ 0

dX = ã(X)dt +b(X)◦dW, (35)

such that solutions x of (33)-(34) converge weakly to X . Here,
W is d-dimensional Brownian motion, the stochastic inte-
gral b(X)◦dW has the Stratonovich interpretation, and ã is a

FIG. 13: Mean (top) and variance (bottom) of the
fluctuations of the entrained synchronized oscillators around
their mean phase, θi−ψc for all i ∈ C . Shown are results for
the full Kuramoto-Sakaguchi model (1) for N = 160 and for
the reduced stochastic model (24)-(25). All other parameters

are the same as in Fig. 1.

modified drift term incorporating eventual corrections to the
Stratonovich integral. Homogenization establishes that the
Brownian motion W has covariance matrix Σ and the modi-
fied drift term is given by

ã(X) = a(X)+ 1
2

d

∑
α,β ,γ=1

Eγβ
∂α bβ (X)bαγ(X). (36)

Here, Ai j denotes the (i, j)’th entry of a matrix A and Aβ de-
notes the β ’th column of A. The symmetric and positive-
definite covariance matrix Σ is given by a Green-Kubo for-
mula

Σ =
∫

∞

0

∫ {
v⊗ vt + vt ⊗ v

}
ρ∞(y)dydt, (37)

where u⊗ v = uvT ∈ Rd×d for u,v ∈ Rd and vt = v(y, t) =
v(y(t);y(0) = y), and the so called Lévy area E is given by the
skew-symmetric matrix

E =
∫

∞

0

∫ {
v⊗ vt − vt ⊗ v

}
ρ∞(y)dydt. (38)
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Identifying bi(θ̃i) = K
(
cos(θ̃i), sin(θ̃i)

)
∈ R1×2 and v =

(S,C)T ∈ R2×1 we compute

Σ = 2
∫

∞

0

(
R(OU)

ξ ξ
(t) 0

0 R(OU)
ζ ζ

(t)

)
dt,

where we used R(OU)
ξ ζ

(t) =−R(OU)
ζ ξ

(t), and

E = 2
∫

∞

0

(
0 R(OU)

ξ ζ
(t)

−R(OU)
ξ ζ

(t) 0

)
dt.

It turns out that the Stratonovich correction

hi =
1
4

d

∑
j=1

2

∑
k=1

Σkk
∂bik

∂θ j
(θ̃i)b jk(θ̃ j) = 0

vanishes if we neglect derivatives of the mean phase ψc with
respect to θi and assume Σ11 = Σ22 consistent with the nu-
merical observations (cf. Figure 8). The drift correction as-
sociated with the Lévy area is calculated as δΩ := KE12/2 =

K
∫

∞

0 R(OU)
ξ ζ

(t)dt. Note that this correction is a constant for
all oscillators i, and hence only constitutes a correction to
the global mean frequency Ω. Summarizing, homogenization
leads to the following SDE for the synchronized oscillators
i ∈ C driven by Brownian motion

dθi =
[
ωi− Ω̃+

K
N ∑

j∈C
sin(θ j−θi−λ )

+K cos θ̃i 〈S〉t +K sin θ̃i 〈C〉t
]
dt

+
K√
N

(
cos θ̃i, sin θ̃i

)
dW, (39)

where dW = (dW1 dW2)
T is two-dimensional Brownian mo-

tion with covariance matrix Σ and Ω̃ = Ω−δΩ.
Figure 14 shows that the overall statistics of the order pa-

rameter rc is reasonably well described by the homogenized
reduction (39), albeit to a lesser degree than with our stochas-
tic reduced system (24)-(25). We remark that for the homoge-
nized reduction (39) we are not able to define a meaningful ex-
pression for the overall order parameter r as Brownian motion
is a non-stationary process and the noise fluctuations Zt do not
attain a constant variance (cf. (30)). Albeit the relatively good
recovery of the statistical properties of the order parameter
by the homogenized system, Figure 11 shows that its actual
temporal evolution exhibits unrealistically non-smooth fluctu-
ations (rather than by the smoother Ornstein-Uhlenbeck pro-
cess).

It is worthwhile to mention that the mean-square-
displacement of S(t) and C(t), i.e.

M(t) = lim
T→∞

1
T

∫ T

0
(g(s+ t)−g(s))2ds,

for either g(t) = S(t) or g(t) = C(t), does not scale linearly
with time t as would be expected for Brownian motion, but
instead saturates, in agreement with a stationary OU process,
as shown in Figure 15.

FIG. 14: Comparison of the empirical histograms for rc
obtained from a single trajectory of the Kuramoto-Sakaguchi
model (1) for N = 160 and from the homogenized reduced

stochastic model driven by Brownian motion (39). All other
parameters are the same as in Fig. 1.

FIG. 15: Mean-square-displacement M(t) of S(t) and C(t).
All parameters are the same as in Fig. 1.

These results agree with our earlier observation that the
emerging stochastic behaviour of the dynamics of the en-
trained synchronized oscillators is not caused by a time-scale
separation between slow synchronized cluster and the as-
sumed fast rogue oscillators with larger intrinsic frequencies.
We had already seen in Figure 9 that the dynamics of the rogue
oscillators contains extended slow periods of near alignment
with the synchronized cluster. Instead our work shows that
the stochasticity emerges as a weak coupling effect of a large
number of uncorrelated rogue oscillators.

IV. DISCUSSION

We provided a comprehensive treatment of the effect of
non-entrained rogue oscillators on the collective behaviour
of the entrained synchronized oscillators in the Kuramoto-
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Sakaguchi model. We established an average effect, in the
spirit of a law of large numbers, and then determined the
fluctuations around the mean effect akin to the central limit
theorem. We presented results from numerical simulations
that suggest that the fluctuations can be approximated by a
Gaussian process with a stationary density and fluctuations
which decay as 1/

√
N. Hence for fluctuations to have a

significant effect one needs the number of rogue oscillators
to be sufficiently large to allow for a central limit theorem
and sufficiently small to have a nonnegligible variance.
Gaussian processes are determined entirely by their mean
and their covariance function. This allowed us to replace the
interaction term involving the rogue oscillators by an Orn-
stein Uhlenbeck process, and to formulate a closed equation
for the entrained synchronized oscillators only, which are
driven by this complex Ornstein-Uhlenbeck process. The
reduced system of stochastic differential equations showed
remarkable capability to reproduce the statistical behaviour
of the entrained oscillators such as the probability density
function of the order parameter. It is pertinent to mention
that the order parameter is driven by coloured Ornstein-
Uhlenbeck noise and not, as previously claimed on heuristic
grounds, by Brownian motion. We showed that Brownian
motion will lead to a far rougher time evolution of the order
parameter than the actual Kuramoto-Sakaguchi equation.
On a theoretical level, it would be interesting to see if one
can employ homogenization theory for chaotic deterministic
slow-fast systems52–56 to derive limiting stochastic dynamics
for the entrained oscillators directly from the determinis-
tic Kuramoto-Sakaguchi model (1), assuming that rogue
oscillators are fast. However, we caution that we showed
here numerically that the fluctuations have an underlying
stationary Gaussian distribution with a constant variance
rather than a nonstationary Gaussian distribution with a
linearly in time varying variance.

The stochastic reduced equation can now be fur-
ther reduced, for example via the method of collective
coordinates33–36,47. In particular, one can employ the methods
developed for the reduction of a stochastic Kuramoto model57

to the system derived here for the Kuramoto-Sakaguchi
model. This has the potential to capture finite size effects
which cannot be captured via standard mean-field theories.
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