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Westerly wind bursts (WWBs) have long been known to have a major impact on the development of El
Niño events. In particular, they amplify these events, with stronger events associated with a higher number
of WWBs. We further find indications that WWBs lead to a more monotonically increasing evolution of
warming events. We consider here a noise-driven recharge oscillator model of ENSO. Commonly, WWBs
are represented by a state-dependent Gaussian noise which naturally reproduces the amplification of warm
events. However, we show that many properties of WWBs and their effects on sea surface temperature (SST)
are not well captured by such Gaussian noise. Instead, we show that conditional additive and multiplicative
(CAM) noise presents a promising alternative. In addition to recovering the sporadic nature of WWBs,
CAM noise leads to an asymmetry between El Niño and La Niña events without the need for deterministic
nonlinearities. Furthermore, CAM noise generates a more monotonic increase of extreme warming events
with a higher frequency of WWBs accompanying the largest events. This suggests that extreme warm events
are better modelled by CAM noise. To cover the full spectrum of warm events we propose a conditional
noise model in which the wind stress is modelled by additive Gaussian noise for sufficiently small SSTs and
by additive CAM noise once the SST exceeds a certain threshold. We show that this conditional noise model
captures the observed properties of WWBs reasonably well.

INTRODUCTION

Westerly wind bursts (WWBs) in the equatorial Pacific last a week or two, have a longitudinal scale of a thousand km, and
have preceded and amplified every major El Niño event in the observed record [1]. WWBs trigger ocean Kelvin waves that
accelerate the East Pacific warming [2]. While these are weather events, they are not completely random, and tend to occur
when the equatorial SST begins to warm [3], therefore amplifying a developing El Niño [4]. Finally, WWBs occur more
frequently during the active phase of the MJO [5, 6]. Because of this implied state-dependency, WWB events are commonly
represented as a multiplicative Gaussian noise term in simplified ENSO models studying their role in El Niño events [e.g., 7, 8].
In this formulation, the red noise amplitude is multiplied by a Heaviside function of the temperature and by the East Pacific
temperature itself, restricting the events to warmer than normal temperatures, and making sure the stochastic noise amplitude
increases with the SST anomaly, as motivated by observational analysis [3]. This allows an excellent fit to the observed record
[8, 9]. In this work, we provide an alternative to this stochastic forcing formulation, which provides an improved representation
of the effects of WWBs on ENSO and which better resolves particular signatures of WWBs and their impact on major El Niño
events.

To motivate our proposed formulation, consider Figure 1, which shows an inferred measure of the time-integrated wind stress
associated with WWBs from a numerical simulation of a global configuration of the Community Atmospheric Model [10]. The
measure attempts to represent the effect of these events on the ocean, including both their amplitude and their duration. The
observed time series with its sporadic high-amplitude peaks resembles that of so called correlated additive and multiplicative
(CAM) noise [11–14]. This suggests to replace the commonly employed Gaussian stochastic forcing by non-Gaussian CAM
noise. As we will show, such CAM noise naturally reproduces the observed asymmetry between El Niño and La Niña events,
without the inclusion of any deterministic nonlinearities designed to promote such asymmetry. Moreover, CAM noise will
be shown to generate several of the signatures of major El Niño events. In particular, major El Niño events are the result of
a sustained driving by several large amplitude WWBs [5, 6]. Furthermore, major El Niño events exhibit a more monotonic
increase in their strength over the preceding year as we will show. Both of these features are well reproduced by an RO model
driven by CAM noise, whereas the standard multiplicative Gaussian noise fails to capture them. This suggests that CAM noise



is a more appropriate noise model to model WWBs in a warm ocean environment, promoting large El Niño events, whereas
colder oceanic environments are better captured by Gaussian noise. We therefore propose a conditional noise model in which
the noise is Gaussian unless the SST exceeds a certain threshold when the noise switches to CAM noise. This conditional noise
model will be shown to well reproduce the observed signatures of large El Niño events, while preserving the overall observed
statistical properties of ENSO.
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FIG. 1. An inferred measure of the time-integrated wind stress due to westerly wind bursts in a global climate model [CESM2, 15]. Shown is
∆tWWB U2

WWB, where the WWB duration is given by ∆tWWB (in days) and the surface wind speed strength is UWWB (in m/s).

The paper is organized as follows. In Section we introduce the recharge oscillator (RO) model [8, 16, 17], including a
deterministic nonlinearity representing an asymmetric response of the SST to changes in the thermocline. Section introduces
the stochastic forcing. We discuss additive and multiplicative noise and introduce a coloured Gaussian noise model as well
as CAM noise. We show that the coloured Gaussian noise gives rise to Brownian motion when integrated whereas the CAM
nosie gives rise to Lévy noise with abrupt jumps, which have the potential to trigger large El Niño events. Section numerically
explores the effect of three noise (stochastic forcing) scenarios for representing WWBs in an RO model: (1) a standard Gaussian
noise used as multiplicative noise based on the East Pacific SST, representing what is the emerging consensus in the ENSO
literature; (2) a CAM noise, and finally, (3) a conditional noise that alternates between Gaussian noise for cold SST anomalies
and CAM for positive anomalies. We argue that the conditional CAM noise may better capture the dynamics of large El Niño
events. We conclude in Section with a discussion of our results.

METHODS

The recharge oscillator model

We consider the following recharge oscillator (RO) model [8, 16–18] for the Western Pacific thermocline depth anomaly hw

and the Eastern Pacific sea-surface temperature (SST) anomaly Te,

Ṫe = −r(Te − γhe(t)) (1)

ḣw = −ε(hw + aτ(t)), (2)

where the Eastern Pacific thermocline depth is expressed as

he = hw + d τ, (3)
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with non-dimensional wind stress

τ = bTe + νξ(t). (4)

We set d = 1m3/N throughout. The parameters r and ε control the characteristic decay time scales for the SST and the
thermocline depth, respectively, and a, b are positive constants. The noise ξ(t) with amplitude ν > 0 represents the effect of
westerly wind bursts [8]. For westerly wind anomalies, ξ > 0, the noise acts to reduce the West Pacific thermocline depth hw

and amplifies the East Pacific SST Te, and vice versa for ξ < 0. The RO model can be concisely written as [8],

Ṫe = RTe + F1hw + σT ξ(t) (5)

ḣw = −F2Te − εhw − σh ξ(t), (6)

where R = r(γb − 1) represents the Bjerknes feedback and F1 = rγ and F2 = abε are constants, and σT = F1ν and
σh = F1F2/(R+ r)ν denote the amplitudes of the noise. Without stochastic driving (i.e., ν = 0) the dynamics of (5)–(6) is that
of a damped linear oscillator with frequency ω2 = F1F2 − (ε+R)2/ and damping rate λ = (ε−R)/2.

We choose parameters such that one time unit in (5)–(6) corresponds to 1 month. We remark that tuning the parameters of
the RO model to match observations of ENSO’s variance, period, skewness, etc., introduces a biased set of parameters toward
ENSO being too strongly damped [19], although that should not affect our focus here.

To account for the observed asymmetry that El Niño events are typically of a larger magnitude than La Niña events, the RO
model can be extended to include a nonlinear term in the temperature equation [see 8, for a recent review]. Instead, we use
in one of our three numerical experiments below a nonlinear response of the SST to the thermocline depth, motivated by the
parameterization of subsurface temperature in the CZ model [20]. This involves employing a nonconstant response γ of the SST
to changes in the thermocline,

γ =

{
γ+ if he ≥ 0

γ− if he < 0,
. (7)

With γ+ > γ−, equation (1) implies a stronger effect of a positive thermocline depth anomaly on the SST than the effect of
a negative thermocline depth anomaly. This enhances El Niño amplitudes relative to those of La Niña events, as observed.
Alternatively, one could add quadratic nonlinearities (βT 2, with β > 0) in the temperature equation (1) to represent physical
processes that favor the growth of El Niño relative to La Niña (e.g., [8, 21] for a systematic investigation of the impact of
different nonlinear terms). Besides such deterministic nonlinearities, state-dependent stochastic drivers [18, 22, 23] and non-
Gaussian noise [24, 25] were proposed as further dynamic ingredients to account for the observed asymmetry. In the following,
we introduce several prototypical noise models. In Section we will discuss their effect on the dynamics of ENSO, including its
asymmetry, within the RO model, and then combine them to generate a conditional noise that exhibits more realistic signatures
consistent with observations.

Noise models

We consider both additive and multiplicative noise with

ν = ν0 + ν1max(0, Te). (8)

Multiplicative noise with ν2 ̸= 0 takes into account that atmospheric noise, such as westerly wind bursts (WWBs), occurs
more frequently and with higher amplitude over a warmer equatorial ocean. Such multiplicative noise naturally introduces an
asymmetry of larger El Niño events compared to La Niña events [9, 18, 22].

Additive noise with ν1 = 0 cannot generate the desired ENSO asymmetry for a Gaussian driving noise such as coloured
Ornstein-Uhlenbeck (OU) processes [26]. However, as we will show, certain non-Gaussian noise models, such as CAM noise,
can generate the asymmetry even when only applied additively. Correlated additive and multiplicative noise (CAM) is defined
as the stochastic process governed by

dξ = c1ξ dt+ (c2ξ + c3) ◦ dW1 + c4 dW2. (9)

Here, W1,2 are independent Brownian motions (Wiener noise), with independent normally distributed random increments
Wn+1

i − Wn
i , and ◦ denotes Stratonovich noise. This noise model naturally appears when modelling the effect of fast dy-

namic processes onto slower ones and has found numerous applications in atmospheric and climate dynamics [11–14, 27–29].

3



The noise model (9) contains both a purely Gaussian noise and a non-Gaussian noise as particular limits, depending on its
parameters. For c2 = c3 = 0 and c1 < 0, we have

dξ = −|c1|ξ dt+ c4 dW2, (10)

and the CAM noise reduces to an Ornstein-Uhlenbeck noise with an asymptotic Gaussian distribution and zero mean.
However, for c1 < 0 and c2 ̸= 0 CAM noise is non-Gaussian and lies in the domain of attraction of α-stable processes

[30]. This means that if such a process is integrated in time, it generates random variables which are drawn from an α-stable
distribution. Contrary, the central limit theorem ensures that if a Gaussian process is integrated in time, the resulting random
variables are also distributed according to a Gaussian. Such α-stable processes or Lévy processes Lα,β,η are characterized
by discrete jumps, and are parametrized by three parameters α, η and β. The stability parameter α ∈ (0, 2] determines the
occurrence and size of the jumps. For α = 2 we obtain a continuous Gaussian process without any discrete jumps. For α < 2,
however, the variance of such a process is not defined, as discrete jumps of arbitrary size have non-vanishing probability, and
for α < 1 even the mean ceases to exist. The skewness parameter β ∈ [−1, 1] controls the direction of the jumps with β = 1
allowing for only positive jumps, β = −1 allowing for only negative jumps, β = 0 allowing for on average as many positive
as negative jumps, and values of β in between quantifying the probability of having positive or negative jumps. The scale
parameter η reduces to the variance for the Gaussian case with α = 2. For more details on α-stable processes, we refer the
reader to [31, 32].

For c4 ̸= 0 the mean of ξ is well-defined, and one has explicit expressions for the parameters of the resulting Lévy process α,
β and η as functions of the parameters of the CAM process [30, 33]. For integrated CAM noise, the stability parameter α of the
resulting α-stable process Lα,η,β is given by

α = −2c1/c
2
2, (11)

the skewness parameter is given by,

β = tanh

(
πc3(α− 1)

2c4

)
, (12)

and the scale parameter η is given by

η =

2 cosh
(

πc3(α−1)
2c4

)
cα+1
2 αN

Γ(1− α) cos
(π
2
α
)

1
α

,

with

N = 2π(2c4)
−α Γ(α)

c2Γ(z)Γ(z̄)
,

z =
α+ 1

2
+ i

c3(α− 1)

c4
,

where the bar denotes the complex conjugate.
Figure 2 shows examples of CAM processes ξ(t) and their integrals Ξ =

∫ t
ξ(s)ds. Panel (a) depicts a Gaussian Ornstein

process with c1 = −2/3, c4 = 0.7, c2 = c3 = 0, which when integrated yields Brownian motion as shown in panel (c), in
accordance with the central limit theorem. Panel (b) shows non-Gaussian CAM noise with intermittent unbounded peaks with
c1 = 1.22, c2 = 1.14, c3 = 0.65 and c4 = 0.8, which, when integrated, lead to α-stable noise with jumps, as shown in panel
(d). In the following, we will call noise obtained from (9) OU noise if c2 = c3 = 0 and c1 < 0. We will use the term CAM
noise only for those processes (9) that are not OU processes. For parameters of the CAM process that leads to α-stable noise
with only positive jumps, i.e., β = 1, we see that jumps are caused by sporadic peaks of varying sizes of the CAM noise. These
sporadic large-amplitude peaks will constitute our prototypical noise representation of WWBs. In our application, we need to
limit the magnitude of the CAM noise for WWBs not to have an arbitrarily large amplitude. We will below replace the output of
the CAM noise (9) by max(ξ, θ), with θ = 3 unless stated otherwise.

RESULTS

To examine the effect of the noise on ENSO as a representation of WWBs, we consider three noise models:
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FIG. 2. (a) OU process with a characteristic decorrelation decay time of 4.9 days (c1 = −1.4, c4 = 0.7, c2 = c3 = 0). (b) CAM noise
process with intermittent peaks (c1 = 1.22, c2 = 1.14, c3 = 0.65 and c4 = 0.8 with corresponding α = 1.88 and β = 0.81). (c) and (d)
show the integrals of (a) and (b), correspondingly.

(1) A multiplicative OU noise, a common representation of WWBs [8, 18, 22], denoted OU.

(2) An additive noise model with non-Gaussian CAM noise, denoted CAM.

(3) A conditional noise model, denoted CON, where we employ additive OU noise for negative SST anomaly, Te < 0, and
then allow for more intense WWBS modeled by adding CAM noise for Te > 0.

Note that in CON, the noise is state-dependent, and can therefore be considered multiplicative noise, even if its amplitude is
not proportional to the temperature as in OU.

Figure 3 shows the NINO3 index from 1871 until 2023 from the NOAA data set [34] where we subtracted the seasonal cycle
and employed a moving average over a 4-month window. The focus of this work is large El Niño events, which we define
to be those events with an NINO3 index larger than 1.5 °C. We expect such large events to be preceded by strong WWBs,
consistent with the large El Niño events of 1997 and 2015 (marked by vertical gray lines in Figure 3), which were accompanied
by particularly strong WWBs [35].

Our aim is to reproduce the statistical behaviour, as well as additional observed signatures associated with extreme El Niño
events. Each of our three noise models is calibrated to reproduce the empirical histogram of the observed NINO3 time series,
its power spectrum, and its variance and skewness, all based on the 153-year-long period from 1871 until 2023 (i.e., 1,836
months). We summarize the model parameters in Table I. For the conditional noise, we employ a window of three months to
determine the persistence of an SST anomaly. For computational ease, in the RO model (1)–(2) the average over the past three
months is calculated as the average over the last three monthly snapshots, rather than as an average over all time steps occurring
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FIG. 3. Observed NINO3 index from 1871 until 2023. A moving average over 4 months was applied to observations from [34]. The horizontal
line demarcates an index of 1.5, which we use to separate large El Niño events from normal ones. The vertical lines denote the years 1997 and
2015, for which the large El Niño events were accompanied by strong WWBs.

during the past three months. To match the empirical histogram for the conditional noise model (CON), we find we need
to use the nonlinear SST response (7), which in effect shifts the histograms to higher values of the SST, enhancing its asymmetry.

Figure 4 shows a contour plot of the empirical 2D histogram of the variance and skewness for each 1,836-month-long
segment of a 108 months-long simulation of the SST Te for the RO model (1)–(2), together with the mean of the variance and
skewness on the observed NINO3 index. Note that the nonzero skewness for the additive CAM noise is entirely generated
by the symmetric CAM noise process, which favours positive amplitudes with β = 0.8075. Hence, CAM noise is capable
of generating ENSO’s asymmetry of having stronger El Niño events than La Niña events without any multiplicative noise or
deterministic nonlinearities.

Figure 6 shows the corresponding histograms for the SST Te and the power spectrum together with the corresponding curves
for the observed NINO3 index. It is seen that all three noise models are capable of reproducing the global statistics reasonably
well. Corresponding typical time series of the East Equatorial Pacific SST, Te, are shown in Figure 5. The large sporadic peaks
of the CAM noise as seen in Figure 2 give rise to large El Niño events and hence to a higher degree of asymmetry between
El Niño and La Niña and a more skewed distribution compared to the OU process, even without any deterministic asymmetry
promoting nonlinear SST response. We recall that we do not use the stochastic signal obtained from (9) directly but cap
the signal to be bounded and not to exceed a threshold of θ = 3. To better distinguish the capability of the respective noise
models to reproduce the effect of large WWBs on the dynamics, we now seek more fine-grained signatures associated with
large-amplitude El Niño events.

Observed strong El Niño events are accompanied by a sequence of WWBs. This is part of the positive feedback of warmer
SSTs promoting the probability of the occurrence of WWBs, and WWBs intensifying the SST warming [e.g., 4]. Figure 7
shows the number of months that support a WWB during the 12-month period preceding an El Niño event. Strong WWBs are
defined as large noise events with ξ > 10/ν0; for CON we choose the smaller of the two values for ν0. We show results for
the 20% largest and for the 20% smallest El Niño events (out of a long simulation of a total of 106 months). Consistent with
the observation of strong El Niño events co-occurring with several WWBs, the temperature Te of the strongest El Niño events
is accompanied by a much larger number of WWBs for CAM and CON noise compared to small El Niño events (Figure 7b,c).
This effect is still observable to some degree for the multiplicative OU process (Figure 7a), albeit to a much smaller degree.

We next present a further dynamical signature associated with large El Niño events. Figure 8 shows the evolution of the
NINO3 index from the 12 months before the peak until the peak for the 22 largest El Niño events with NINO3 indices exceeding
the threshold of 1.5. The four largest events, which include the two events from 1997 and 2015 that were preceded by unusually
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(a) (b) (c)

FIG. 4. Histograms of the variance and skewness of the SST for different driving noise models. The red dot demarcates the observed variance
and skewness from the NINO3 index. The black dot is the average of a 108 month-long simulation of the recharge oscillator model (1)–(2).
(a) OU, (b) CAM, (c) CON.
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FIG. 5. Typical time series of the SST Te obtained from the RO model (1)–(2), when driven by different noise models. (a) OU, (b) CAM, (c)
CON.

strong WWBs, exhibit an increase in the year preceding the peak that is much less disrupted by downward NINO3 trends. In
other words, the NINO3 time series leading to an El Niño event appears to be more monotonously increasing than for small
events. To see if this feature of large WWB-dominated El Niños is reproduced by the three noise models, we rank all El Niño
events in descending order and introduce a monotonicity measure µk for the kth largest El Niño event. The measure is zero if
the NINO3 index monotonically increases in the last 12 months toward the peak, and it is positive for events where the increase
toward the peak is not monotonous. We define,

µk =
1

T
(k)
e (0)− T

(k)
e (−12)

12∑
j=0

∣∣∣∆mT (k)
e (j)

∣∣∣ . (13)

Here, T (k)
e (0) denotes the kth largest peak in Te at peak time, and T

(k)
e (−12) is the NINO3 index 12 months earlier for that

peak. The operator ∆m records negative increments in Te, i.e., ∆mT
(k)
e (j) = min(T

(k)
e (j + 1) − T

(k)
e (j), 0). We show in

Figure 9 the monotonicity measure µk for the 100 largest El Niños recorded in a time series obtained by integrating the recharge
oscillator model (1)–(2) for 1,000,000 months for the three noise models. For this purpose, El Niño events are defined as those
peaks that are at least 12 months apart and have a duration of at least 4 months. It is seen that for the OU noise model, the 50
largest El Niño events have many more decreasing increments than for the CAM and CON models. We remark that the small
sample size of the observations makes any statistical tests based on this measure hard, but the qualitative picture emerging from
Figure 8 is compelling.

Recall that, contrary to the OU and the CAM noise model, the CON noise model involves an asymmetric response of the SST
with γ1 ̸= γ2. An obvious question is, if the observed behaviour depicted in Figures 7(c) and 9(c) is due to this asymmetric
response rather than to the proposed conditional CAM noise model. To clarify this, we show in Figure 10 the monotonicity
measure and the empirical histogram of the number of large noise amplitude events occurring during warm events for a con-
ditional noise with a symmetric response (and adjusted noise amplitudes ν0 to match the observed power spectrum as well as
the implied variance and skewness of Te). It is clearly seen that the conditional noise model with a symmetric response also
exhibits the characteristic behaviour observed for real WWBs. The asymmetric response is required, however, to allow for a
better approximation of the empirical histogram of the temperature (cf. Figure 6 (c)); a symmetric response leads to a histogram
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FIG. 6. (Top panels) Histograms of the observed NINO3 index from 1871 until 2023 with a monthly resolution and with the seasonal cycle
removed (blue bars) and of the solution of the RO model (1)–(2) shown by continuous curves, for the three noise models, (a) OU, (b) CAM,
(c) CON. We show the 5th and 95th percentile confidence levels for the NINO3 index data as bars (beige) estimated from 10,000 bootstrapped
samples. (Bottom panels) Power spectra S(Te) of the observed NINO3 index from 1871 until 2023 with a monthly resolution and with the
seasonal cycle removed (green) and of the solution of the RO model (1)–(2) for the three noise models (d) OU, (e) CAM, (f) CON. A Welch
window of 16 years was employed.

shifted to smaller temperatures (not shown).

(a) (b) (c)

FIG. 7. Empirical histogram of the number of large noise amplitude events with ξ > 10/ν0 occurring in the 12 months preceding a warm
event in the RO model (1)–(2). Shown are the empirical histograms for the largest and smallest fifth of El Niño events (with a duration of at
least 4 months). Parameters as in Figure 4. (a) OU, (b) CAM, (c) CON.

CONCLUSIONS

We explored three noise models for representing the effects of WWBs on ENSO in an RO model. One is multiplicative OU
noise, a choice often used in the literature for this purpose. Another is based on CAM noise, characterized by the occurrence of
sporadic large peaks, motivated by the appearance of WWB amplitudes (Figure 1). And a final one that conditionally switches
from OU for negative NINO3 to CAM for positive NINO3 (CON). All three models were able to explain the spectrum, the
empirical histogram, the variance and the skewness of the observed NINO3 time series. We introduced two additional measures
based on observed qualitative behavior of large El Niño events that are typically preceded by multiple WWBs. In particular, we
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FIG. 8. Timeseries segments of NINO3 index of El Niño peaks, with the NINO3 index larger than 1.5. These are segments of the full timeseries
seen in Figure 3, that are plotted from 12 months before the peak until the peak. The thick lines depict the four largest El Niño events in the
observed record. This figure demonstrates that the NINO3 tends to increase monotonously for the largest events, motivating the monotonicity
measure introduced in (13).
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FIG. 9. Monotonicity measure µ for the 100 largest peaks in Te for the RO model (1)–(2) with different driving noise models. (a) OU, (b)
CAM, (c) CON.

considered the number of WWBs that precede large peaks and the monotonicity of the NINO3 increase toward the peak of El
Niños.

Our numerical results suggest OU noise may be an appropriate forcing leading to normal El Niño events of small and moderate
amplitude. Whereas we find that CAM noise is better suited to generate high-amplitude events, accounting for their monotonicity
and larger number of WWBs preceding them. Our proposed conditional noise combines these two noise models to construct a
noise model that accounts for both, small and large amplitude El Niño events, allowing for a better representation of WWBs,
better reproducing the overall statistical features of ENSO as well as the observed qualitative behaviour of large amplitude El
Niño events.

Further exploration of this idea using more realistic climate models seems an appropriate future direction.
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FIG. 10. (a) Monotonicity measure µ for the 100 largest peaks in Te and (b) empirical histogram of the number of large noise amplitude events
with ξ > 10/ν0 occurring in the 12 months preceding a warm event for the RO model (1)–(2) driven by a conditional noise model with all
parameters as for CON but with a symmetric response γ1 = γ2 = 0.08 and adjusted noise amplitudes ν0 = 17.5 for the OU noise component
and ν0 = 5.4 for the CAM component.

multiplicative OU additive CAM conditional OU/CAM
r 0.28 0.25 0.17

ε 1/2.7 1/2.7 1/2.7

a 0.41 0.41 0.33

b 14 14 14

γ+ 0.088 0.09 0.08

γ− 0.088 0.09 0.0728

ν0 20 6 21/6.5
ν1 0.2791 0 0

c1 −1.4 −1.22 −1.4/−1.19

c2 0 1.14 0/1.12
c3 0 0.65 0/1.2
c4 0.7 0.8 0.7/1.1

TABLE I. Parameters for the RO model (1)–(2) and the noise models (9). Here the units are as follows: [r] = 1/month, [ε] = 1/month,
[a] = m3/N , [b] = 1/K, [γ±] = K/m, [ν0] = 1, [ν1] = 1/K.

APPENDIX: MODEL PARAMETERS
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[31] David Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, second edition, 2009.
[32] Alexei V. Chechkin, Ralf Metzler, Joseph Klafter, and Vsevolod Yu. Gonchar. Introduction to the theory of Lévy flights. In Reiner
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