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Abstract. We consider the problem of sampling from an unknown distribution
for which only a sufficiently large number of training samples are available. Such
settings have recently drawn considerable interest in the context of generative mod-
elling. In this paper, we propose a generative model combining diffusion maps and
Langevin dynamics. Diffusion maps are used to approximate the drift term from the
available training samples, which is then implemented in a discrete-time Langevin
sampler to generate new samples. By setting the kernel bandwidth to match the
time step size used in the unadjusted Langevin algorithm, our method effectively
circumvents any stability issues typically associated with time-stepping stiff stochas-
tic differential equations. More precisely, we introduce a novel split-step scheme,
ensuring that the generated samples remain within the convex hull of the training
samples. Our framework can be naturally extended to generate conditional sam-
ples. We demonstrate the performance of our proposed scheme through experiments
on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale
parametrization conditional sampling problem.

1. Introduction

Generative modeling is the process of learning a mechanism for synthesizing new
samples that resemble those of the original data-generating distribution, given only a
finite set of samples. It has seen wide adoption and enormous success across diverse
application domains, from image [5, 21, 43, 49] and text generation [63, 29, 30], to
drug discovery [3, 2] and anomaly detection [10, 47], to name but a few.

In this paper, we introduce a new nonparametric approach to generative model-
ing that combines ideas from optimal transportation, diffusion maps, and Langevin
dynamics.

Suppose that we are given M training samples x(i) ∼ π, i = 1, . . . ,M , from an
unknown distribution π on Rd. Perhaps the simplest nonparametric approach to gen-
erative modeling is to build a kernel density estimate (KDE) and then sample from it;
the KDE is essentially a mixture model with M components. Alternatively, one could
estimate the score function, ŝM (x) ≈ s(x) := ∇ log π(x), without directly estimating
π, and use this estimate as the drift term of Langevin dynamics,

(1) Ẋt = ŝM (Xt) +
√

2Ẇt,

where Wt denotes standard d-dimensional Brownian motion.
There are myriad ways of estimating the score function [22, 54], and given an esti-

mate for it, one needs to discretize (1), for example using Euler–Maruyama, to obtain
an implementable scheme. However, the step size needs to be carefully chosen: a small
step size leads to slow convergence, while too large a step yields instability of the
numerical scheme, especially for data that are supported on a compact manifold, e.g.,

(2) M = {x ∈ Rd : g(x) = 0},
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for some unknown function g(x). Any estimated score function ŝM (x) will take large
values for x with ‖g(x)‖2 � 0, rendering the Langevin dynamics (1) stiff. In other
words, an explicit time integration method such as Euler–Maruyama will require ex-
tremely small step sizes.

In this paper, we choose an alternative approach. Instead of first estimating the
score function ŝM (x) and then discretising (1) in time, we employ diffusion maps
[8, 7, 37] to directly approximate the semigroup exp(εL), ε > 0, of a diffusion process

with generator L and invariant distribution π, from the given samples {x(i)}Mi=1. The
second key ingredient of our method is to interpret ε as a step size and to read off a
Gaussian transition kernel from the diffusion map in the form of

(3) Xn+1 = mε(Xn) + Σ(Xn)Ξn,

with appropriately defined functions mε : Rd → Rd and Σ : Rd → Rd×d, and Ξn ∼
N(0, I). Broadly, mε(Xn) controls the drift, while Σ(Xn)Ξn introduces noise. In this
recursion, the step size ε is linked with the error of the diffusion map approximation,
making the time discretization implicit. Comparing to directly discretizing (1) using
Euler–Maruyama with step-size ∆t = ε, we will demonstrate that the scheme (3) is
stable and ergodic for all step-sizes ε > 0 and, hence, ε can be chosen solely on accuracy
considerations. Furthermore, the inclusion of the position-dependent diffusion matrix
Σ(x) makes it better suited for sampling from a manifold.

While our approach is rooted in diffusion maps [8, 7, 37, 38], our construction
utilizes a Sinkhorn scheme [58], which is motivated by considering a special case of
the discrete Schrödinger bridge problem of optimally coupling the empirical measure
of the training samples with itself. By solving the Schrödinger bridge problem, we
construct a transition matrix whose state space encompasses all the training points.
We generalize this approach to the continuous state space that extends beyond the
current training data points. Armed with this transition kernel, we obtain a Markov
chain that samples from the underlying distribution of the training data via (3). From
here, we introduce a novel split-step time-stepping scheme, which ensures that the
generated samples consistently lie within the convex hull of the training samples. In
contrast, using a direct discretization of (1) with Euler–Maruyama results in generating
samples on unbounded domains.

In addition, we replace the fixed bandwidth kernel with a variable bandwidth kernel
within our diffusion map framework. As we demonstrate in our numerical experiments,
the resulting sampling scheme (3) provides a better representation of the underlying
target distribution. More precisely, we assess the quality of the generated samples
using a variable bandwidth kernel and using a fixed bandwidth kernel on synthetic
data sets drawn from non-uniform distributions supported on irregular domains and
on low-dimensional manifolds.

We then extend our method to create a conditional generative model. This allows
to perform Bayesian inference in the “simulation-based” setting, i.e., without explicit
evaluation of a prior density or likelihood. We demonstrate the performance of this
approach in a stochastic subgrid-scale parametrization problem.

1.1. Related work. Langevin dynamics (1) characterizes the motion of particles as
they experience a blend of deterministic and stochastic forces. Unlike in this paper, it
is typically assumed that the deterministic forcing term ∇ log π(x) is given. Langevin
dynamics has been used as a popular tool for sampling data from the target distribution
π. One variation of this is to introduce a symmetric preconditioning operator to the
Langevin dynamics. Some popular choices of the preconditioning include the empirical
covariance [12, 6, 39] and the Riemannian metric [13, 61, 28], making this method
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converge faster and more geometry-aware, while leaving the stationary distribution
unchanged.

On the other hand, diffusion maps have traditionally served as a tool for nonlinear
dimensional reduction [8, 7, 37]. The kernel matrix formed using pairwise sample
distances with appropriate normalization approximates the semigroup exp(εL). In
recent work [58], an alternative normalization technique based on Sinkhorn weights
has been studied. The Sinkhorn algorithm solves for the Markov transition kernel
associated with a discrete Schrödinger bridge problem, where the coupling is between
the empirical measures of the training samples with themselves. This approach results
in a symmetric stochastic operator that, notably, also approximates the semigroup
exp(εL). The drift term of the Langevin dynamics is estimated by acting on the
identity function. Separately, the idea of using variable bandwidth kernels can be
found very early in the statistics community for kernel density estimation [45, 56],
for estimating regression curves [36] and mean regression functions [11]. Recently, [1]
replaces the original fixed bandwidth kernel with the variable bandwidth kernel in the
construction of diffusion maps, making the approximation of the generator accurate on
unbounded domains. Inspired by this concept, we replace the fixed bandwidth kernel
with a variable bandwidth kernel. The resulting normalized matrix approximates the
semigroup of a different Langevin diffusion process.

In recent years, there has been a surge of research interest in the realm of genera-
tive modeling. Despite the able achievements of well-established neural network-based
generative models, such as variational auto-encoders (VAE) [25, 42], generative adver-
sarial networks (GAN) [14], and diffusion models or score generative models (SGM)
[20, 51, 55, 62], they often require meticulous hyperparameter tuning [44, 53] and ex-
hibit a long training time [14, 57, 50]. The efficacy of these methods significantly hinges
on the architectural choices and parameter settings of the underlying deep neural net-
works [46, 24], which, regrettably, demands a high level of expertise. Furthermore,
SGMs solve both a forward and a reverse stochastic differential equation (SDE). The
forward SDE introduces noise to the sample, transforming the data into the standard
normal distribution, while the reverse SDE takes sample from the standard normal
distribution back to the original data distribution, yielding a different sample than the
one initially fed into the forward SDE. During the training process, the score function
is learned, not for the target distribution, but for the data distribution at each time.
Our work, on the other hand, solves only one (forward) SDE, and we learned the score
of the target distribution only once.

Several recent studies have combined a range of score function estimation techniques
with Langevin dynamics. For example, [52] introduces a noise conditional score net-
work to learn the score function and then uses annealed Langevin dynamics to generate
samples, and [4] studies the convergence rate of a Langevin based generative model,
where the score is estimated using denoising auto-encoders. Such techniques are also
studied within the Bayesian imaging community, commonly referred to as “plug and
play” [27]. Nevertheless, these approaches use neural networks for the estimation of
the score function, necessitating substantial fine-tuning, and their effectiveness depends
on factors such as the complexity of the approximation families and the architectural
structures of the neural networks. In addition, [27] uses an explicit projection to en-
sure that samples stay on the compact manifold given by (2) which is assumed to be
explicitly known. In contrast, we do not assume any knowledge of M.

1.2. Outline. In Section 2 we construct a Markov chain using a Schrödinger bridge
diffusion map approximation that samples from the given discrete data distribution.
In Section 3, we extend this Markov chain to the continuous setting by constructing a
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Gaussian transition kernel which extracts its conditional mean and covariance matrix
from the underlying diffusion map approximation. We introduce two discrete-time
Langevin samplers; one with an arbitrary data-unaware diffusion and one with a data-
aware diffusion matrix in Section 3.1. Theoretical properties such as stability and
ergodicity are discussed in Section 3.2. We further discuss the application of variable
bandwidth kernels when estimating the diffusion map in Section 3.3. While Section 3
focuses on finite step-size and finite sample-size implementations, Section 4 establishes
connections to the underlying semi-groups and generators in the infinite sample-size
limit. We explore the extension of our proposed scheme to a conditional sampling
setting in Section 5, and we demonstrate our proposed methods in Section 6 in a
suite of examples, including a conditional sampling exercise with an application to
stochastic subgrid-scale parametrization. We conclude in Section 7 with a summary
and an outlook.

2. Discrete Schrödinger bridges

In this section, we collect some preliminary building blocks by considering the sim-
pler task of building a discrete Markov chain over the samples {x(i)}Mi=1, which leaves
the associated empirical probability measure

µem(dx) =
1

M

M∑
i=1

δx(i)(dx)

in Rd invariant. Here δx(dx) denotes the Dirac delta distribution centred at x. In the
subsequent section, we will generalise the finding from this section to approximately
sample from π, allowing for the generation of new samples which are different from
the given training samples.

We consider the Schrödinger bridge problem of coupling µem with itself along a
reversible reference process of the form

(4) X ′ = X +
√
ε
(
K(X ′) +K(X)

)1/2
Ξ,

where ε > 0 is a tuneable parameter, Ξ ∼ N(0, I), and K(x) is a symmetric positive
definite matrix for all x ∈ Rd. Popular choices include K = I, K = ΣM , where ΣM

is the empirical covariance matrix of the samples {x(i)}Mi=1, and K = ρ(x)I, where
ρ(x) > 0 is a scaling function representing variable bandwidth. The update step (4)
corresponds to a Stratonovitch SDE with multiplicative noise and diffusion matrix
K(x). This provides a natural way of interpreting K(X ′) +K(X) as a preconditioner
for the associated Schrödinger bridge problem, and this fact will be explored in the
context of variable bandwidth implementations in Section 3.3.

Instead of working with the empirical measure µem(dx), we introduce the probability

vector p∗ = (1/M, . . . , 1/M)T ∈ RM over {x(i)}Mi=1. Then the Schrödinger bridge
problem is solved by first introducing the symmetric matrix Tε ∈ RM×M with entries

(5) tij = exp

(
− 1

2ε
(x(i) − x(j))T

(
K(x(i)) +K(x(j))

)−1
(x(i) − x(j))

)
.

One then finds the scaling vector vε ∈ RM such that the symmetric matrix

(6) Pε = D(vε)TεD(vε)

satisfies
Pε1M = p∗.

Here 1M = (1, . . . , 1)T ∈ RM , and D(v) ∈ RM×M denotes the diagonal matrix with
diagonal entries provided by v ∈ RM .
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Given Pε, one can now construct a Markov chain that samples from µem. Assume
the Markov chain is currently in state x(j), then the transition probabilities to the next
state x ∈ {x(i)}Mi=1 are given by

pj = MPεej ∈ RM ,

where ej ∈ RM denotes the j-th unit vector in RM . Since all entries in Pε are bounded

from below provided all samples satisfy x(i) ∈M, whereM is a compact submanifold
in Rd, the constructed Markov chain possesses a unique invariant measure given by
p∗ and is geometrically ergodic. The rate of convergence can be determined by the
diffusion distance

d(x(i), x(j)) = ‖pi − pj‖2.
If the diffusion distance is small, then x(i) and x(j) are well connected. Furthermore, if
d(x(i), x(j)) is small for all points, then the Markov chain will mix quickly. In particular,
larger values of ε will lead to faster mixing. This idea can be further extended to the
case where the samples are not uniformly weighted. In Bayesian inference, for example,
the weight at each data point is proportional to its likelihood. We illustrate this idea
in the following remark.

Remark 2.1. If there is a change of measure due to, for example, observed data with
likelihood π(y|x), then the resulting new empirical measure is given by

µ̂em(dx) = C−1
M∑
i=1

π(y|x(i))δx(i)(dx),

where C =
∑M

i=1 π(y|x(i)). Let us introduce the probability vector

p̂∗ = C−1(π(y|x(1)), . . . , π(y|x(M)))T ∈ RM .
The associated coupling is now provided by

P̂ε = D(v̂ε)TεD(v̂ε)

subject to

P̂ε1M = p̂∗.

Furthermore, the transition probabilities pj ∈ RM , j = 1, . . . ,M , get replaced by

p̂j =
P̂εej

1TM P̂εej
∈ RM

and the associated Markov chain will sample from the empirical posterior distribution
µ̂em(dx).

However, the goal is to approximately sample from the underlying distribution π and
not just the empirical distribution µem(dx). The required extension of our baseline
algorithm is discussed in the following section.

3. Diffusion approximation

In order to implement (3), we need to define mε(x) and Σ(x) for x ∈ Rd. In
this section, we discuss how one can obtain these functions from the training samples
{x(i)}Mi=1 and the diffusion map approximation (6).

Given the underlying reference process (4) and samples {x(i)}Mi=1, recall that X ′|X =
x ∼ N(x, ε(K(x)+K(X ′))). We therefore introduce the vector tε(x) ∈ RM with entries

(7) tε,i(x) = exp

(
− 1

2ε
(x(i) − x)T

(
K(x) +K(x(i))

)−1
(x(i) − x)

)
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for i = 1, . . . ,M . We then define the probability vector using the Sinkhorn weights,
vε, obtained in (6), i.e.,

(8) pε(x) =
D(vε)tε(x)

vTε tε(x)

for all x ∈ Rd. This vector gives the transition probabilities from x to {x(i)}Mi=1 and
provides a finite-dimensional approximation to the conditional probability distribution
πε(·|x) of the true underlying diffusion process; that is, the semigroup exp(εL) with
generator L. See Section 4 for more details. In the following, we further approximate
πε(·|x) by a Gaussian and estimate its mean and covariance matrix using the probability
vector pε and the data matrix of samples

(9) X = (x(1), . . . , x(M)) ∈ Rd×M .

3.1. Sampling algorithms. We now present our main Langevin sampling strategies
based on the diffusion map approximation for the probability vector pε(x) in (8). Our
sampling schemes have the same drift term, mε(x), but differ in the way the diffusion
matrix, Σ(x), is defined. We consider a data-unaware diffusion as well as a data-aware
diffusion which turns out to be advantageous in generating new samples from the data
distribution π. See the numerical experiments in Section 6.

3.1.1. Langevin sampler with data-unaware diffusion. Following the proposed method-
ology, we introduce the sample-based approximation of the conditional mean

(10) mε(x) := Xpε(x).

Remark 3.1. The construction of the conditional mean mε(x) is known as the barycen-
tric projection of the entropy-optimally coupling [48, 40]. In optimal transport, vε plays
the role of the optimizer of the dual problem.

Using mε(x), we propose the recursive sampler

(11) Xn+1 = Xn + ∆τ

(
mε(Xn)−Xn

ε

)
+
√

2∆τK(Xn)1/2Ξn,

where ∆τ is the time step. In other words, we obtain the score function approximation

(12) sM (x) =
mε(x)− x

ε

in (1). By taking ∆τ = ε, we have

(13) Xn+1 = mε(Xn) +
√

2εK(Xn)1/2Ξn.

Note that (13) fits into the general formulation (3) with Σ(x) =
√

2εK(x)1/2.
The parameter ε > 0 can be seen as a step-size. For large ε, the expected value mε(x)

will become essentially independent of the current state Xn and the diffusion process
will sample from a centred Gaussian. For ε → 0, on the other hand, the probability
vector pε(x) can potentially degenerate into a vector with a single entry approaching
one with all other entries essentially becoming zero. Hence a key algorithmic challenge
is to find a good value for ε and a suitable K(x), which guarantee both good mixing
and accuracy, that is, Xn ∼ π as n→∞.
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3.1.2. Langevin sampler with data-aware diffusion. From (8) and (9), one can also
define the conditional covariance matrix,

(14) C(x) = (X −mε(x)1TM)D(pε(x))(X −mε(x)1TM)T ∈ Rd×d,
which is the covariance matrix associated with the probability vector pε(x). There-
fore, one can more directly implement a Gaussian approximation associated with the
transition probabilities pε(x) and introduce the update

(15) Xn+1 = Xn + ∆τ

(
mε(Xn)−Xn

ε

)
+
√

∆τ/εC(Xn)1/2Ξn.

Similar to the previous case, setting ∆τ = ε implies

(16) Xn+1 = mε(Xn) + C(Xn)1/2Ξn,

which we found to work rather well in our numerical experiments since it directly
captures the uncertainty contained in the data-driven coupling Pε. The scheme (16)

corresponds to setting Σ(x) = C(x)1/2 in (3). Also note that the schemes (16) still
depends on K(X) through the probability vector pε(x).

It is not always justifiable to use ∆τ = ε as a step-size and ∆τ < ε can be beneficial
instead. In those cases, one can resort to the re-scaled time-stepping methods (11)
or (15), respectively.

3.2. Algorithmic properties. We briefly discuss several important properties on the
stability and the ergodicity of the proposed Langevin samplers.

The following Lemma establishes that, since each pε(x) is a probability vector,

mε(x) = Xpε(x) is a convex combination of the training sample {x(i)}Mi=1.

Lemma 3.1. Let us denote the convex hull generated by the data points {x(i)}Mi=1 by
CM . It holds that

(17) mε(x) ∈ CM
for all choices of ε > 0 and all x ∈ Rd.

Proof. Follows from the definition (10) and the fact that pε(x) is a probability vector
for all ε > 0 and all x ∈ Rd. �

This establishes stability of the Langevin samplers (13) and (16) for all step-sizes ε > 0.
The next lemma shows that the Langevin sampler (13) is geometrically ergodic

toward the invariant measure π.

Lemma 3.2. Let us assume that the data generating density π has compact support.
Then the time-stepping method (13) possesses a unique invariant measure and is geo-
metrically ergodic provided the norm of the symmetric positive matrix K(x) is bounded
from above and below for all x ∈ Rd.

Proof. Consider the Lyapunov function V (x) = 1 + ‖x‖2 and introduce the set

C = {x : ‖x‖ ≤ R}
for suitable R > 0. Since mε(Xn) ∈ CM and π has compact support, one can find a

radius R > 0, which is independent of the training data {x(i)}, such that CM ⊂ C and

E[V (Xn+1)|Xn] ≤ λV (Xn)

for all Xn /∈ C with 0 ≤ λ < 1. Furthermore, because of the additive Gaussian noise
in (13), there is a probability density function ν(x) and a constant δ > 0 such that

n(x′;mε(x), 2εK(x)) ≥ δν(x′)



8 GEORG GOTTWALD, FENGYI LI, YOUSSEF MARZOUK, AND SEBASTIAN REICH

for all x, x′ ∈ C. Here n(x;m,Σ) denotes the Gaussian probability density function
with mean m and covariance matrix Σ. In other words, C is a small set in the sense
of [35]. Geometric ergodicity follows from Theorem 15.0.1 in [35]. See also the self-
contained presentation in [33]. �

Extending Lemma 3.2 to the time-stepping scheme (16) is non-trivial since the covari-
ance matrix (14) may become singular.

Lemma 3.1 also suggests to replace the sampling step (13) by the associated split-
step scheme

Xn+1/2 = Xn +
√

2εK(Xn)1/2Ξn,(18a)

Xn+1 = mε(Xn+1/2).(18b)

This scheme now satisfies Xn ∈ CM for all n ≥ 1 and any choice of ε. Similarly, one
can replace (16) by the split-step scheme

Xn+1/2 = Xn + C(Xn)1/2Ξn,(19a)

Xn+1 = m(Xn+1/2).(19b)

These split-step schemes have been used in our numerical experiments.

3.3. Variable bandwidth diffusion. It is well-known from the literature on diffu-
sion maps that a variable bandwidth can improve the approximation quality for fixed
sample size M [1]. Here we utilize the same idea. However, we no longer insist on
approximating the standard generator with K = I, since we only wish to sample from
the distribution π rapidly. Hence, we consider (4) with K(x) of the form

(20) K(x) = ρ(x)I.

It is an active area of research to select a ρ that increases the spectral gap of L while
not increasing computational complexity. Indeed, a larger spectral gap implies a faster
convergence rate [41], indicating that the generated samples are closer to the reference
at a finite time, exhibiting a high accuracy. We demonstrate numerically in Section
6 that ρ can indeed be used to increase the sampling accuracy. More specifically, the
bandwidth ρ(x) is chosen as

(21) ρ(x) = π(x)β,

where β ≤ 0 is a parameter and the unknown sampling distribution π is approximated
by an inexpensive low accuracy density estimator. One finds that the variable band-
width parameter β in (21) and the scaling parameter ε both influence the effective
step-size in the reference process (4) for (20). In order to disentangle the two scaling
effects we modify the construction of the entries (5) in Tε as follows. We first com-

pute πi ≈ π(x(i)) over all data points and then rescale these typically unnormalized
densities:

π̃i = Z−1πi, Z :=
1

M

∑
j

πj .

The variable scaling length is then set to

ρi = π̃βi = Z−βπβi

for i = 1, . . . ,M , that is, K(x(i)) = ρiI in (5) and, more generally,

(22) K(x) = Z−βπ(x)β.

The proposed scaling implies that a constant target density π(x) leads to K(x(i)) = I
in (5) regardless of the chosen β value. See Section 6 below for our numerical findings.
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4. Connections to the generator of Langevin dynamics

In this section, we discuss the proposed methodology in the limit M →∞ under the
idealised assumption that the target distribution π is in fact known. It is well-known
that K = I implies that the diffusion map approximates the semi-group corresponding
to the generator of standard Langevin dynamics. Employing a variable bandwidth (20)
instead, i.e. K = ρ(x)I, alters the semi-group and thus the underlying generator. How-
ever, since in both cases the density π(x) remains invariant, this is not an issue as we
are only concerned with drawing samples from the distribution and not in reproducing
any dynamical features.

More precisely, using (20) in (4), we consider the diffusion map approximation given
by (6). We formally take the limit M → ∞ and denote the limiting operator by Pε
[58]. One formally obtains

Pε = eεL,

where L denotes the generator defined by

(23) Lf = π−1∇ · (πρ∇f) = ∇ · (ρ∇f) + ρ∇ log π · ∇f

We note that L is self-adjoint (reversible) with respect to the π-weighted inner product.
It is more revealing to consider the dual operator

L†µ = ∇ · (µρ∇(logµ− log π))

and the associated mean-field evolution equation

Ẋt = ρ(Xt) (∇(log π(Xt)− logµ(Xt)) , X0 ∼ µ0,

which implies the invariance of µ = π.
Please also note that the generator corresponds to the diffusion process

(24) Ẋt = ρ(Xt)∇ log π(Xt) +∇ρ(Xt) +
√

2ρ(Xt)Ẇ

in Itô form and to

Ẋt = ρ(Xt)∇ log π(Xt) +
√

2ρ(Xt) ◦ Ẇ

in Stratonovitch form. The drift term in the Itô formulation (24) can be expressed as

(25) L Id = ρ∇ log π +∇ρ

and, hence, the score function (12) is a finite M approximation to

s(x) = L Id(x).

However, recall that the recursive Langevin sampler (13) relies on a direct time-
stepping approach to (24) and is based on

mε(x) = Xpε(x) ≈ exp(εL) Id(x)

instead of an approximation of the drift term on the right hand side of (24) via (25)
followed by Euler–Maruyama. However, both approaches are formally consistent in
the limit ε→ 0 as

exp(εL) Id(x) ≈ x+ εs(x).

While we have focused on the particular choice K(x) = ρ(x)I in this section for
simplicity, the discussion naturally extends to symmetric positive definite matrices
K(x).
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5. Conditional sampling

In this section, we explore an extension of the sampling scheme (18) to the context
of conditional generative modeling. More specifically, consider a random variable in
x = (y, z), which we condition on the second component for given z = z∗. In other

words, we wish to sample from π(y|z∗) given samples x(i) = (y(i), z(i)), i = 1, . . . ,M ,
from the joint distribution π(x) = π(y, z).

Bayesian inference arises as a popular application of conditional sampling. In the
traditional Bayesian inference framework, to generate samples from the posterior dis-
tribution, one typically requires access to both the prior and the likelihood, namely,

π̂(y) := π(y|z∗) ∝ π(z∗|y)π(y).

However, conditional sampling provides a way to sample from the posterior just via the
samples from the joint, obviating the need for the Bayesian update. In order to perform
the required conditional sampling, we propose a method which combines approximate
Bayesian computation (ABC) with our diffusion map based sampling algorithm.

Let us assume that we can generate M samples x(i) = (y(i), z(i)), i = 1, . . . ,M , from
a joint distribution π(y, z), which we then wish to condition on a fixed z∗. As before, we

construct vectors of transition probabilities pε(x) ∈ RM based on the samples {x(i)}Mi=1.
We assume that the bandwidth parameter ε used in the diffusion map approximation
is also applied in the ABC misfit function, that is,

L(z, z∗) =
1

2ε
‖z − z∗‖2.

This suggests the following split-step approximation scheme. Given the last sample
Xn = (Yn, Zn), we first update the z-component using

Ẑn = Zn − ε∇zL(Zn, z
∗) = z∗.

In other words, we replace the current Xn by X̂n = (Yn, z
∗). Next we apply the

split-step scheme (18) to X̂n, that is,

Xn+1/2 = X̂n +
√

2εK(X̂n)1/2Ξn,

and

Xn+1 = mε(Xn+1/2) = Xpε(Xn+1/2)

where X = (x(1), . . . , x(M)) and the definition of the probability vectors pε(x) follows
from (8). The split-step scheme (19) generalises along the same lines.

6. Numerical experiments

In this section, we illustrate our method through three numerical examples encom-
passing different ranges and focal points. In the first two examples,we generate samples
using synthetic datasets with increasing dimensions. Our emphasis is on exploring the
impact of employing the variable bandwidth kernel. In the third example, we show-
case the proposed conditional generative modeling in Section 5, applied to a stochastic
subgridscale parametrization problem.

6.1. One-dimensional manifold. To illustrate how well the proposed methods gen-
erate statistically reliable samples we consider first the case of M samples x ∈ R2. In
particular, we consider samples with a polar representation with radius r = 1 + σrξr
and angle θ = π/4 + σθξθ with σr = 0.06 and σθ = 0.6 and ξr,θ ∼ N(0, 1). We used
M = 2, 000 samples to learn the transition kernel and then generated 10, 000 new
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samples with an initial condition at the tail with the data point corresponding to the
smallest angle.

We begin by investigating the effect of the two noise models proposed, namely a
constant diffusion as in (13) with constant bandwidth K(x) = I and the case when
the diffusion reproduces the sample covariance C as in (16). We employ a Langevin
sampler with the splitting scheme (18) with ε = 0.009 and (19), respectively. Figure 1
shows that choosing the sample covariance as the noise model is clearly advantageous.
Whereas both noise models generate samples that reproduce the angular distribution
the noise model using a constant diffusion is overdiffusive in the radial direction. In
contrast the noise model using the sample covariance nicely reproduces the radial
distribution.

We now investigate the effect of a variable bandwidth K(x). We employ the noise
model (19) with the sample covariance but use K(x) to determine the diffusion map
(cf. (7)). The Langevin sampler (19) is again initialized with the coordinates of the
data point corresponding to the smallest angle in the data-sparse tail. Figure 2a shows
the samples projected onto the convex hull of the data, i.e. outputs of step (19b),
when a uniform bandwidth K(x) = I with ε = 0.009 is employed. Although the
mean behaviour is well reproduced, it is seen that the generative model fails near
the data-sparse tails for large and small angles. Here the value of ε is too small to
generate significant diffusion and the samples are aligned on the (linear) convex hull
of the widely separated data samples. To mitigate against this behaviour we employ
a variable bandwidth ρ(x) = πβ with β = −1/5 and a kernel density estimate π(x).
Figure 2b shows how the variable bandwidth kernel is able to better reproduce the
sampling in the data-sparse tail regions. Figure 3 shows the empirical histograms for
the radius and the angle variables of the noisy samples corresponding to Figure 2 (i.e.
outputs of step (19a)). Whereas both, the uniform and the variable bandwidth kernels,
reproduce the radial distribution very well, the uniform bandwidth fails to reproduce
the angular distribution in the tails where the diffusion is not sufficiently strong to let
the sampler escape the convex hull of the data.

We have seen that a constant uniform bandwidth generates samples which are con-
centrated in the bulk of the data and which are overly diffusive in the radial direction
(cf. Figure 1c). One may wonder if employing a smaller virtual time step ∆τ < ε
in the Langevin sampler (11) will allow a Langevin sampler with constant bandwidth
to generate more faithful samples. Figure 4 shows that choosing a smaller time step
∆τ in (15), here with ∆τ = ε/4 is indeed able to reproduce the radial distribution.
However, if the Langevin sampler is initialised with a data point in the center of the
data samples, it is not able to diffuse into the tail of the distribution distribution,
leading to an under-diffusive empirical histogram for the angles.

The numerical experiments above suggest that we employ a noise model using the
sample covariance C combined with a variable bandwidth K(x) to control eventual
data sparse regions. When employing a variable bandwidth our method contains two
hyperparameters which require tuning: the bandwidth factor ε and the exponent β in
the arbitrary choice of the variable bandwidth ρ(x). Their role will be explored in the
following subsection.

6.2. Multi-dimensional manifolds. In this numerical example, we show our pro-
posed method on hyper semi-spheres of dimension d = {3, 4, 9}, using both a fixed
bandwidth kernel and a variable bandwidth kernel. Data are generated by firstly

sampling z(i) = (z
(i)
1 , · · · , z(i)d ) from a d-dimensional standard normal distribution, and
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Figure 1. Comparison of the different noise models employed by the
generative model. We employed a constant bandwidth with ε = 0.009.
Left: Original (blue) and generated data using a constant covariance
(red) and the sample covariance C(x) (magenta). Middle: Empirical
histograms of the angular variable θ. Right: Empirical histograms of
the radial variable r.
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Figure 2. Effect of a variable bandwidth K(x) = ρ(x)I in data-sparse
regions. For the generative model the Langevin sampler (19) is used and
we set ε = 0.009. Results are shown for the output of step (19b). Left:
Original (blue) and generated data for a constant bandwidth K(x) = I
(red). Right: Original (blue) and generated data for a variable band-
width K(x) = ρ(x)I with ρ(x) = π(x)β with β = −1/5 (magenta).

then setting y(i) = (z
(i)
1 , · · · , αz(i)d ), with α = 5 to promote non-uniformity. Finally, the

samples x(i) are obtained by normalizing y(i) to achieve the unit length, i.e., y(i)/
∥∥y(i)∥∥,

and perturbing y(i)/
∥∥y(i)∥∥ in the radial direction with U(0, 0.01) noise. An instance

of the target samples of three dimensions can be seen in Figure 5. Given a band-
width ε and a bandwidth function ρ(x), we implement the proposed scheme (19). For
the fixed bandwidth kernel we set ρ(x) = 1. For the variable bandwidth kernel (22),
we set ρ(x) = π(x)β, with β < 0, and π(x) is approximated using a kernel density
estimator. We use M = 1, 000 training samples to learn the transition kernel and
run a Langevin sampler to generate 50, 000 samples, with the initial data point being
(1, 0, · · · , 0) ∈ Rd. To obtain a better mixing of the Langevin sampler, we take one
every 20 samples in the the last 2, 0000 generated samples of the chain, resulting in
a total of 1, 000 samples. To evaluate the quality of the generated samples, we com-
pute the regularized optimal transport (OT) distance between the generated samples

{x(i)gen}Mg

i=1 and the original reference samples {x(j)ref}
Mr
j=1. The regularized OT distance
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Figure 3. Effect of a variable bandwidth K(x) = ρ(x)I on the angular
and radial distributions (left and right, respectively). Shown are the
original data (blue), generated data for a constant bandwidth K(x) = I
(red) and for a variable bandwidth K(x) = ρ(x)I with ρ(x) = π(x)β

with β = −1/5. The data were generated using a constant covariance
noise model in (19) and ε = 0.009.
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Figure 4. Effect of a variable time step ∆τ in the Langevin sampler
(18) with constant diffusion K = 1. Results are shown for the original
data, and for ∆τ = ε and ∆τ = ε/4. Throughout a constant bandwidth
is used. Left: Empirical histogram of the angular variable θ. Middle:
Empirical histograms of the radial variable r. Right: Original (blue)
and generated data in the (x1, x2)-plane with ∆τ = 1 (red) and with
∆τ = ε/4 (green).

with entropy penalty 1/λ is defined as

dλ(xgen, xref) = min
P

∑
i,j

PijCij −
1

λ
h(P ),

subject to the constraint that

P1Mr =
1

Mg
(1, · · · , 1)> ∈ RMg

P>1Mg =
1

Mr
(1, · · · , 1)> ∈ RMr ,

where

h(P ) = −
∑
i,j

Pij logPij
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d optimal bandwidth
3 ε∗ = 0.008
4 ε∗ = 0.010
9 ε∗ = 0.050

Table 1. Optimal bandwidth parameters leading to minimal OT dis-
tance for different dimensions d, obtained using grid search.

is the information entropy. The entries of C ∈ RMg×Mr are set to be the pairwise

Euclidean distances between {x(i)gen}Mg

i=1 and {x(j)ref}
Mr
j=1, and each sample is assigned equal

weight marginally. We compute this distance using the Sinkhorn–Knopp algorithm [9,
26]. The number of reference samples is chosen to be Mr = 50, 000, and the entropic
regularization penalty is set to be 1/λ = 100. We consider the OT distance as a
diagnostic to quantify the statistical accuracy of the sampling scheme.

We then optimize over the parameters ε for a fixed λ using grid search. To be
more precise, for the Langevin sampler with a fixed bandwidth kernel, we vary ε, and
compute the OT distance of the generated samples. The best performed ε is chosen
to be the one that corresponds to the smallest OT distance, and we call it ε∗. For the
variable bandwidth kernel, we fix ε = ε∗. In order to disentangle the effect of varying
ε and varying β we use the normalized variable bandwidth as described in (22). β is
set to be −0.01× 2n with n = {0, · · · , 8} for d = {3, 4, 9}. The optimal bandwidth ε∗

is reported in Table 1 and the comparisons between the fixed bandwidth kernel and
the variable bandwidth kernel are presented in Figure 6. We observe that by keeping
ε fixed, the OT distance becomes smaller for a wide range of β.

We then examine the quality of generated samples at the optimal ε and β along the
last coordinate (the nonuniform direction). Similar to the previous study, we compute
the one dimensional OT distance of the marginal distribution (see Figure 6b) and show
the histograms and the cumulative density function (CDF) of the samples generated
using the fixed bandwidth kernel and using the variable bandwidth kernel in Figure 7.
The benefit of using the variable bandwidth kernel becomes more prominent when
focusing on the marginal samples. In the case where we sample a 4-dimensional hyper-
semisphere with non-uniformity along the last coordinate, we see in Figure 7 that the
empirical CDF of the samples generated with the variable bandwidth kernel closely
aligns with the reference (constructed using samples from the target distribution) for
the most part. In contrast, the samples generated using the fixed variable bandwidth
kernel noticeably diverge from the reference. This aligns with what we observed in
Figure 2 and Figure 3 — the data generated using the variable bandwidth kernel
better resemble the original data. In the cases where the samples are drawn from a
9-dimensional hyper-semisphere, while both methods struggle to generate samples that
mirror those from the target distribution, primarily due to the inherent limitations of
kernel methods in high-dimensional scenarios, employing a variable bandwidth kernel
produces samples that exhibit a closer resemblance to those from the target distribu-
tion.

6.3. Stochastic subgridscale parametrization. The conditional sampling algo-
rithm described in Section 5 can be used to perform stochastic subgridscale parametriza-
tion, a central problem encountered in, for example, the climate sciences. The problem
of subgridscale parametrization, or more generally of model closure is the following:
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Figure 5. Nonuniform samples x(i) on a 3-dimensional semisphere.
The non-uniformity is along the last coordinate x3.

(a) (b)

Figure 6. The dash lines are the OT distance of the samples using a
fixed bandwidth kernel and the solid lines are the OT distance of the
samples using a variable bandwidth kernel. (a) Comparison between
the OT distance of samples generated using a fixed bandwidth kernel
and using a variable bandwidth kernel. (b) Comparison between the
one-dimensional marginal OT distance of samples generated using a
fixed bandwidth kernel and using a variable bandwidth kernel, along
the last coordinate (non-uniform direction). Here the Langevin sampler
is initialized at (1, 0, · · · , 0) for all cases.

given a potentially stiff dynamical system

ż = Fz(z, y) + g(z, y; ε)(26a)

ẏ = Fy(z, y; ε),(26b)

where ε < 1 denotes the time scale separation between slow resolved variables of
interest z ∈ Rds and unresolved fast degrees y ∈ Rdf . Note the notational difference
between the time scale separation parameter ε and the bandwidth parameter ε used
to define the diffusion map. For ε � 1 the system is stiff and to ensure numerical
stability a small time step ∆t < ε is needed. This, together with the potential high-
dimensionality of the fast subspace df � ds, constitutes a computational barrier for
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Figure 7. Comparisons of empirical histograms (top row) and CDFs
(bottom row) of the marginal distribution of the generated samples
along the last coordinate. From left to right: the data are sampled
from a {3, 4, 9}-dimensional (hyper-)semisphere.

simulating the dynamics on the slow time scale of interest. Hence one is interested in
obtaining an effective evolution equation for the slow resolved variables z only which
captures the essential effect of the unresolved variables y. Hence, we seek to determine
the effective reduced dynamics

ż = Fz(z) + ψ(z),(27)

where Fz(z) denotes some a priori known deterministic drift, possibly based on physical
reasoning, and ψ(z) denotes the closure term which may be deterministic or stochastic,
and which parametrizes the unknown unresolved fast processes. Deterministic machine
learning methods have previously been used to learn the average effect of the unre-
solved variables, i.e. the average of g(z, y; ε) over the (conditional) invariant measure
of the fast process [18, 19]. Deterministic maps, however, are not able to capture the
resolved dynamics with sufficient statistical accuracy, and it is by now well established
that the effective equation is of a stochastic nature [34, 17, 23, 16]. In the climate sci-
ences this idea goes back to the seminal work by the 2022 Nobel Prize recipient Klaus
Hasselmann who treated the slow ocean as a stochastic dynamical system as a result
of it experiencing the integrated effect of fast moving weather systems. In the case of
infinite time scale separation there are explicit expressions for the effective drift and
diffusion term of the effective slow dynamics. However, these terms include integrals
over the auto-correlation functions and are numerically very hard to estimate. More-
over, for the realistic case of moderate time-scale separation Edgeworth corrections
need to be included [59, 60], the estimation of which requires even longer time-series.
Instead we propose to learn the closure term ψ(z) and generate realisations ψ(z) on
the fly employing the conditional sampling algorithm described above. We consider
the situation in which scientists have a good understanding of the resolved dynamics
and know the slow vector field Fz(z). Given data of the resolved variables {zn}Nn=1

sampled at equidistant times ∆t, the closure term ψ(z) capturing the effect of the
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unresolved dynamics (26b) can then be estimated as

ψ(zn) = zn+1 − zn − Fz(zn) ∆t,(28)

for n = 1, · · · ,M − 1. Note that the closure term ψ(z) typically includes effective
diffusion as well as a correction to the drift term Fz(z) [15]. The effective dynamics is
then provided by the discrete stochastic surrogate model

zn+1 = zn + Fz(zn) ∆t+ ψn,(29)

where the subgrid-scale terms ψn = ψ(zn) are generated as follows: Given a kernel
ti(x) with x = (z, ψ(z))T and a vε obtained by the Sinkhorn algorithm as described in

Section 3, and the 2ds×M data matrix X consisting of samples {x(j)}Mj=1, we perform
for j = 1, · · · , ns with ns = 100 a discrete Langevin sampler for x

z∗ = zn

x1,j = z∗

xj+1/2 = xj +
√

2εΞj

xj+1 = Zpε(xj+1/2),

with Ξn ∼ N(0, I). The first assignment x1,n = z∗ = zn ensures the conditioning of
ψ(zn) on z∗ = zn, and ns = 100 ensures that the generated samples ψ(zn) are close to
independent. We choose a fixed bandwidth with ε = 0.001.

We consider here the particular example with ds = 1 and df = 3 given by

ż = z(1− z2) +
4

90ε
h(z) y2,(30)

where the fast dynamics is given by the Lorenz-63 system [31]

ε2ẏ1 = 10(y2 − y1)(31a)

ε2ẏ2 = 28y1 − y2 − y1y3(31b)

ε2ẏ3 = −8

3
y3 + y1y2.(31c)

We look at the case of effective additive noise with h(z) = 1 which does not require
conditioning on the slow variable z, as well as at the case of multiplicative noise with
h(z) = z. We used MATLAB’s built-in ode45 routine [32] to generate the time series
with a time-scale separation parameter of ε = 0.01. The time series is subsequently
sub-sampled with ∆t = 0.1. Figure 8 shows a comparison between the full multi-
scale system (30) - (31) with additive noise h(z) = 1 and the stochastic surrogate
model (29). The slow z-dynamics exhibits stochastic bimodal dynamics. Figure 9
shows a comparison for the multiplicative case h(z) = z which yields unimodal slow
dynamics. It is clearly seen that the surrogate model (29) obtained by the generative
conditional sampler generates statistically reliable dynamics.

7. Conclusions

We introduced a diffusion map based Langevin scheme for generative modeling. Our
method combines diffusion maps with discrete-time Langevin-type sampling, yielding
a nonparametric generative model that requires minimal tuning. We showed numer-
ically that employing a variable bandwidth kernel, in contrast to a fixed bandwidth
kernel, results in generated samples with enhanced accuracy. The performance of the
conditional generative model was showcased through its application to a stochastic
subgrid-scale parametrization problem. Future research will delve into the theoretical
foundations of the proposed scheme, including its convergence rate and scalability.
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Figure 8. Results for the stochastic subgrid-scale parametrization for
the multi-scale system (30) - (31) with ε = 0.01 and with additive noise
h(z) = 1. Shown are results obtained by integrating the full multi-scale
system and by the stochastic subgridscale parametrization scheme using
our generative sampler trained with M = 120, 000. Left: Empirical
histograms of the closure term ψ = ψ(z). Middle: Time series of the
slow variable z(t). Right: Empirical histograms of the slow variable z.
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Figure 9. Results for the stochastic subgrid-scale parametrization for
the multi-scale system (30) - (31) with ε = 0.01 and with multiplicative
noise h(z) = z. Shown are results obtained by integrating the full
multi-scale system and by the stochastic subgridscale parametrization
scheme using our generative sampler, trained with M = 20, 000. Left:
Empirical histograms of the closure term ψ = ψ(z). Middle: Time
series of the slow variable z(t). Right: Empirical histograms of the
slow variable z.
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2022.
[16] G. Gottwald, D. Crommelin, and C. Franzke. Stochastic climate theory. In C. L. E.

Franzke and T. J. O’Kane, editors, Nonlinear and Stochastic Climate Dynamics,
pages 209–240. Cambridge University Press, Cambridge, 2017.

[17] G. A. Gottwald and I. Melbourne. Homogenization for deterministic maps and
multiplicative noise. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science, 469(2156), 2013.

[18] G. A. Gottwald and S. Reich. Supervised learning from noisy observations: Com-
bining machine-learning techniques with data assimilation. Physica D: Nonlinear
Phenomena, 423:132911, 2021. ISSN 0167-2789. doi: https://doi.org/10.1016/j.
physd.2021.132911. URL https://www.sciencedirect.com/science/article/

pii/S0167278921000695.
[19] G. A. Gottwald and S. Reich. Combining machine learning and data assimilation

to forecast dynamical systems from noisy partial observations. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 31(10):101103, 2021. ISSN 1054-1500.
doi: 10.1063/5.0066080. URL https://doi.org/10.1063/5.0066080.

[20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.
[21] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded

diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23:
47:1–47:33, 2021.

[22] A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by
score matching. Journal of Machine Learning Research, 6(4), 2005.

[23] D. Kelly and I. Melbourne. Deterministic homogenization for fast–slow systems
with chaotic noise. Journal of Functional Analysis, 272(10):4063 – 4102, 2017.

[24] A. A. S. Khandelwal. Fine-tuning generative models. PhD thesis, Massachusetts
Institute of Technology, 2019.

[25] D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[26] P. A. Knight. The Sinkhorn-Knopp algorithm: Convergence and applications.
SIAM J. Matrix Anal. Appl., 30:261–275, 2008.

[27] R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra.
Bayesian imaging using plug & play priors: When Langevin meets Tweedie. SIAM
Journal on Imaging Sciences, 15(2):701–737, 2022. doi: 10.1137/21M1406349.
URL https://doi.org/10.1137/21M1406349.

[28] C. Li, C. Chen, D. E. Carlson, and L. Carin. Preconditioned stochastic gradi-
ent langevin dynamics for deep neural networks. In AAAI Conference on Arti-
ficial Intelligence, 2015. URL https://api.semanticscholar.org/CorpusID:

17043130.

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0167278921000695
https://www.sciencedirect.com/science/article/pii/S0167278921000695
https://doi.org/10.1063/5.0066080
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://doi.org/10.1137/21M1406349
https://api.semanticscholar.org/CorpusID:17043130
https://api.semanticscholar.org/CorpusID:17043130


STABLE GENERATIVE MODELING USING DIFFUSION MAPS 21

[29] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto. Diffusion-
lm improves controllable text generation, 2022. URL https://arxiv.org/abs/

2205.14217.
[30] Y. Li, Q. Pan, S. Wang, T. Yang, and E. Cambria. A generative model for category

text generation. Information Sciences, 450:301–315, 2018. ISSN 0020-0255. doi:
https://doi.org/10.1016/j.ins.2018.03.050. URL https://www.sciencedirect.

com/science/article/pii/S0020025518302366.
[31] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sci-

ences, 20(2):130–141, 1963. doi: 10.1175/1520-0469(1963)020〈0130:DNF〉2.0.CO;
2.

[32] MATLAB. version 9.13.0.2049777 (R2022b). The MathWorks Inc., Natick, Mas-
sachusetts, 2022.

[33] J. Mattingly, A. Stuart, and D. Higham. Ergodicity for SDEs and approximations:
locally Lipschitz vector fields and degenerate noise. Stochastic Processes and their
Applications, 101:185–232, 2002.

[34] I. Melbourne and A. Stuart. A note on diffusion limits of chaotic skew-product
flows. Nonlinearity, 24:1361–1367, 2011.

[35] S. Meyn and R. T. Tweedy. Markov Chains and Stochastic Stability. Cam-
bridge University Press, Cambridge, 2nd edition, 2009. doi: 10.1017/
CBO9780511626630.

[36] H.-G. Muller and U. Stadtmuller. Variable bandwidth kernel estimators of regres-
sion curves. The Annals of Statistics, 15(1):182 – 201, 1987. doi: 10.1214/aos/
1176350260. URL https://doi.org/10.1214/aos/1176350260.

[37] B. Nadler, S. Lafon, I. Kevrekidis, and R. Coifman. Diffusion maps, spectral clus-
tering and eigenfunctions of Fokker-Planck operators. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems, vol-
ume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/

2005/file/2a0f97f81755e2878b264adf39cba68e-Paper.pdf.
[38] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps,

spectral clustering and reaction coordinates of dynamical systems. Applied and
Computational Harmonic Analysis, 21(1):113–127, 2006. ISSN 1063-5203. doi:
https://doi.org/10.1016/j.acha.2005.07.004. URL https://www.sciencedirect.

com/science/article/pii/S1063520306000534. Special Issue: Diffusion Maps
and Wavelets.
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and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.

cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.
[52] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data

distribution. Advances in neural information processing systems, 32, 2019.
[53] Y. Song and S. Ermon. Improved techniques for training score-based generative

models. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 12438–
12448. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/

paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf.
[54] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach

to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[55] Y. Song, J. N. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole.
Score-based generative modeling through stochastic differential equations. ArXiv,
abs/2011.13456, 2020.

[56] G. R. Terrell and D. W. Scott. Variable kernel density estimation. The Annals of
Statistics, pages 1236–1265, 1992.

[57] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou. Diffusion-gan: Training GANs
with diffusion. arXiv preprint arXiv:2206.02262, 2022.

[58] C. Wormell and S. Reich. Spectral convergence of diffusion maps: Improved error
bounds and an alternative normalisation. SIAM J. Numer. Anal., 59:1687–1734,
2021. doi: 10.1137/20M1344093.

[59] J. Wouters and G. A. Gottwald. Edgeworth expansions for slow–fast systems with
finite time-scale separation. Proceedings of the Royal Society A: Mathematical,

https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100008
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100008
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.202100008
https://doi.org/10.1177/1536867X0300300203
https://doi.org/10.1177/1536867X0300300203
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf


STABLE GENERATIVE MODELING USING DIFFUSION MAPS 23

Physical and Engineering Sciences, 475(2223):20180358, 2019.
[60] J. Wouters and G. A. Gottwald. Stochastic model reduction for slow-fast systems

with moderate time scale separation. Multiscale Modeling & Simulation, 17(4):
1172–1188, 2019.

[61] T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M. Girolami. Langevin
diffusions and the Metropolis-adjusted Langevin algorithm. Statistics & Proba-
bility Letters, 91(C):14–19, 2014. doi: 10.1016/j.spl.2014.04.002. URL https:

//ideas.repec.org/a/eee/stapro/v91y2014icp14-19.html.
[62] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang,

B. Cui, and M.-H. Yang. Diffusion models: A comprehensive survey of methods
and applications, 2022. URL https://arxiv.org/abs/2209.00796.

[63] D. Yogatama, C. Dyer, W. Ling, and P. Blunsom. Generative and discriminative
text classification with recurrent neural networks. ArXiv, abs/1703.01898, 2017.

https://ideas.repec.org/a/eee/stapro/v91y2014icp14-19.html
https://ideas.repec.org/a/eee/stapro/v91y2014icp14-19.html
https://arxiv.org/abs/2209.00796

	1. Introduction
	1.1. Related work
	1.2. Outline.

	2. Discrete Schrödinger bridges
	3. Diffusion approximation
	3.1. Sampling algorithms
	3.2. Algorithmic properties
	3.3. Variable bandwidth diffusion

	4. Connections to the generator of Langevin dynamics
	5. Conditional sampling
	6. Numerical experiments
	6.1. One-dimensional manifold
	6.2. Multi-dimensional manifolds
	6.3. Stochastic subgridscale parametrization

	7. Conclusions
	References

