A short list of the most useful R commands

A summary of the most important commands with minimal examples. See the relevant part of the guide for better examples. For all of these commands, using the help(function) or ? function is the most useful source of information. Unfortunately, knowing what to ask for help about is the hardest problem.

See the R-reference card by Tom Short for a much more complete list.

Input and display

```
read.table(filename,header=TRUE)
read.table(filename,header=TRUE,sep=',')
```

```
\(\mathrm{x}=\mathrm{c}(1,2,4,8,16)\)
\(\mathrm{y}=\mathrm{c}(1: 10)\)
\(\mathrm{n}=10\)
\(\mathrm{x} 1=\mathrm{c}(\) (rnorm \((\mathrm{n})\) )
\(y 1=c(\) runif(n) \()+n\)
z=rbinom(n,size,prob)
vect=c(x,y)
mat=cbind \((x, y)\)
mat[4,2]
mat[3,]
mat[,2]
subset(dataset,logical)
subset(data.df,select=variables,logical)
data.df[data.df=logical]
x[order(x\$B),]
x[rev(order(x\$B)),]
browse.workspace
```

\#read files with labels in first row \#read a tab or space delimited file \#read csv files
\#create a data vector with specified elements \#creat a data vector with elements 1-10
\#create a n item vector of random normal deviates
\#create another n item vector that has n added to each random uniform distribution
\#create n samples of size "size" with probability prob from the binomial
\#combine them into one vector of length $2 n$
\#combine them into a $\mathrm{n} \times 2$ matrix
\#display the 4th row and the 2nd column
\#display the 3rd row
\#display the 2nd column
\#those objects meeting a logical criterion
\#get those objects from a data frame that meet a criterion
\#yet another way to get a subset
\#sort a dataframe by the order of the elements in B
\#sort the dataframe in reverse order
\#a menu command that creates a window with information about all variables in the workspace

moving around

```
Is() #list the variables in the workspace
rm(x)
rm(list=|s())
attach(mat)
or data frame available in the workspace
detach(mat)
new=old[,-n]
new=old[n,]
new=subset(old,logical)
#remove x from the workspace
#remove all the variables from the workspace
#make the names of the variables in the matrix
#releases the names
#drop the nth column
#drop the nth row
#select those cases that meet the logical
condition
complete = subset(data.df,complete.cases(data.df)) #find those cases with no missing values
new=old[n1:n2,n3:n4]
#select the n1 through n2 rows of variables n3
    through n4)
```


distributions

```
beta(a,b)
gamma(x)
choose(n, k)
factorial(x)
dnorm(x, mean=0, sd=1, log = FALSE) #normal distribution
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean=0, sd=1)
dunif(x, min=0, max=1, log = FALSE) #uniform distribution
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)
```

data manipulation

replace(x, list, values)	\#remember to assign this to some object i.e., $x<-$ replace ($x, x==-9, N A$) \#similar to the operation $x[x=-9]<-$ NA
$\begin{aligned} & \text { cut }(x, \text { breaks, labels }=\text { NULL, } \\ & \quad \text { include.lowest }=\text { FALSE, right }=\text { TRUE, dig.lab }=3, \ldots) \end{aligned}$	
x.df=data.frame(x1,x2,x3 ...) as.data.frame() is.data.frame()	\#combine different kinds of data into a data frame
$\mathrm{x}=$ as.matrix()	
scale()	\#converts a data frame to standardized scores
round (x, n)	\#rounds the values of x to n decimal places
ceiling(x)	\#vector x of smallest integers > x
floor(x)	\#vector x of largest interger < x
as.integer(x)	\#truncates real x to integers (compare to round ($\mathrm{x}, 0$)
as.integer (x < cutpoint)	\#vector x of 0 if less than cutpoint, 1 if greater than cutpoint)
factor(ifelse(a < cutpoint, "Neg", "Pos"))	\#is another way to dichotomize and to make a factor for analysis
transform(data.df, variable names = some operation) \#can be part of a set up for a data set	
x\%in\%y	\#tests each element of x for membership in y
y\%in\%x	\#tests each element of y for membership in x
all($\mathrm{x} \% \mathrm{in} \% \mathrm{y}$)	\#true if x is a proper subset of y
all(x)	\# for a vector of logical values, are they all true?
any (x)	\#for a vector of logical values, is at least one
true?	

Statistics and transformations

$\max ()$
$\min ()$
mean()

```
median()
sum()
var() #produces the variance covariance matrix
sd() #standard deviation
mad() #(median absolute deviation)
fivenum() #Tukey fivenumbers min, lowerhinge, median, upper hinge, max
table() #frequency counts of entries, ideally the entries are factors(although it
                                    works with integers or even reals)
scale(data,scale=T) #centers around the mean and scales by the sd)
cumsum(x) #cumulative sum, etc.
cumprod(x)
cummax(x)
cummin(x)
rev(x) #reverse the order of values in x
cor(x,y,use="pair") #correlation matrix for pairwise complete data, use="complete" for
    complete cases
aov(x~y,data=datafile) #where x and y can be matrices
    aov.ex1 = aov(DV~IV,data=data.ex1) #do the analysis of variance or
    aov.ex2 = aov(DV IV1*IV21,data=data.ex2) #do a two way analysis of variance
summary(aov.ex1) #show the summary table
print(model.tables(aov.ex1,"means"),digits=3) #report the means and the number of
                                subjects/cell
boxplot(DV~IV,data=data.ex1) #graphical summary appears in graphics
    window
Im(x~y,data=dataset) #basic linear model where x and y can be
                                    matrices (see plot.Im for plotting options)
t.test(x,g)
pairwise.t.test(x,g)
power.anova.test(groups = NULL, n = NULL, between.var = NULL,
                            within.var = NULL, sig.level = 0.05, power = NULL)
power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
    power = NULL, type = c("two.sample", "one.sample", "paired"),
    alternative = c("two.sided", "one.sided"),strict = FALSE)
```


More statistics: Regression and Linear model

```
\(\operatorname{lm}(\mathrm{Y} \sim X)\)
\(\operatorname{Im}(Y \sim X 1+X 2)\)
\(\operatorname{lm}(Y \sim X \mid W)\)
solve \((A, B) \quad\) \#inverse of \(A\) * \(B\) - used for linear regression
solve(A)
factanal()
princomp()
```

\# Y and X can be matrices
\#inverse of A * B - used for linear regression \#inverse of A

Useful additional commands

colSums (x, na.rm $=$ FALSE, $\operatorname{dims}=1$)
rowSums (x, na.rm $=$ FALSE, $\operatorname{dims}=1$)
colMeans(x, na.rm $=$ FALSE, dims $=1$)
rowMeans(x, na.rm $=$ FALSE, dims $=1$)
rowsum(x, group, reorder = TRUE, ...)
$\operatorname{apply}(\mathrm{X}, \mathrm{MARGIN}, ~ F U N, ~ . .$.
apply (x, 1, min)
$\operatorname{apply}(x, 2, \max)$
col.max(x)
maximum value for each row
which.min (x)
which. $\max (\mathrm{x})$
z=apply(big5r,1,which.min)
\#tells the row with the minimum value for every column
\#finds row sums for each level of a grouping variable
\#applies the function (FUN) to either rows (1) or columns (2) on object X
\#finds the minimum for each row
\#finds the maximum for each column
\#another way to find which column has the

Graphics

```
par(mfrow=c(nrow,mcol))
par(ask=TRUE)
par(omi=c(0,0,1,0) )
```

variable
\#number of rows and columns to graph \#ask for user input before drawing a new graph \#set the size of the outer margins
mtext("some global title",3,outer=TRUE,line=1,cex=1.5) \#note that we seem to need to add the global title last

> \#cex = character expansion factor
boxplot(x,main="title") \#boxplot (box and whiskers)
title("some title") \#add a title to the first graph
hist() \#histogram
plot()
plot($x, y, x \lim =$ range (-1,1),ylim=range(-1,1),main=title)
$\operatorname{par}(\operatorname{mfrow}=\mathrm{c}(1,1)) \quad$ \#change the graph window back to one figure
symb=c $(19,25,3,23)$
colors=c("black","red","green","blue")
charact=c("S","T","N","H")
plot(PA,NAF,pch=symb[group],col=colors[group],bg=colors[condit],cex=1.5,main="P
ostive vs. Negative Affect by Film condition")
points(mPA,mNA,pch=symb[condit],cex=4.5,col=colors[condit],bg=colors[condit])
curve()
abline (a,b)

$$
\begin{aligned}
& \text { abline }(\mathrm{a}, \mathrm{~b}, \text { untf = FALSE, } \ldots \text {) } \\
& \text { abline }(\mathrm{h}=\text {, untf = FALSE, } \ldots \text {) } \\
& \text { abline }(\mathrm{v}=, \text { untf = FALSE, } \ldots \text {) } \\
& \text { abline }(\text { coef }=, \text { untf = FALSE, } \ldots \text {) } \\
& \text { abline }(\text { reg }=, \text { untf = FALSE, } \ldots \text {) }
\end{aligned}
$$

identify()
plot(eatar,eanta, xlim=range(-1,1),ylim=range(-1,1),main=title)
identify(eatar,eanta,labels=labels(energysR[,1])) \#dynamically puts names
on the plots
locate()
legend()
pairs() \#SPLOM (scatter plot Matrix)
pairs.panels () \#SPLOM on lower off diagonal, histograms on diagonal, correlations on diagonal
\#not standard R, but uses a function found in useful.r

```
matplot ()
biplot ())
plot(table(x)) #plot the frequencies of levels in x
x= recordPlot() #save the current plot device output in the object x
replayPlot(x) #replot object x
dev.control #various control functions for printing/saving graphic files
pdf(height=6, width=6) #create a pdf file for output
dev.of() #close the pdf file created with pdf
layout(mat) #specify where multiple graphs go on the page
#experiment with the magic code from Paul Murrell to do fancy
graphic location
layout(rbind(c(1, 1, 2, 2, 3, 3),c(0, 4, 4, 5, 5, 0)))
for (i in 1:5) {
    plot(i, type="n")
    text(1, i, paste("Plot", i), cex=4)
}
```


Distributions

To generate random samples from a variety of distributions

```
runif(n,lower,upper)
rnorm(n,mean,sd)
rbinom(n,size,p)
sample(x, size, replace = FALSE, prob = NULL) #samples with or without replacement
```


Working with Dates

date <-strptime(as.character(date), "\%m/\%d/\%y") \#change the date field to a internal form for time \#see ?formats and ?POSIXIt
as.Date
month= months(date) \#see also weekdays, Julian

Additional functions that I have created because I needed some specific operation may be included in the workspace by issuing the source command:

```
source(http://personality-project.org/r/useful.r)
```

These functions include:
\#alpha.scale \#find coefficient alpha for a scale and a dataframe of items
\#describe give means, sd, skew, n, and se
\#summ.stats \#basic summary statistics by a grouping variable
\#error.crosses (error bars in two space)
\#skew find skew
\#panel.cor taken from the examples for pairs
\#pairs.panels adapted from panel.cor -- gives a splom, histogram, and correlation matrix
\#multi.hist \#plot multiple histograms
\#correct.cor \#given a correlation matrix and a vector of reliabilities, correct for reliability
\#fisherz \#convert pearson r to fisher z
\#paired.r \#test for difference of dependent correlations
\#count.pairwise \#count the number of good cases when doing pairwise analysis
\#eigen.loadings \#convert eigen vector vectors to factor loadings by unnormalizing them
\#principal \#yet another way to do a principal components analysis -- brute force eignvalue decomp
\#factor.congruence \#find the factor congruence coeffiecints
\#factor.model \#given a factor model, find the correlation matrix
\#factor.residuals \#how well does it fit?
\#factor.rotate \# rotate two columns of a factor matrix by theta (in degrees)
\#phi2poly \#convert a matrix of phi coefficients to polychoric correlations
part of a short guide to R
Version of February 20, 2005
William Revelle
Department of Psychology
Northwestern University

