THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS AND SCIENCE

STAT 2012: Statistical Tests

Semester 2, 2007 Time allowed: Two hours

Answer ALL questions.

For each hypothesis test unless otherwise stated, you should state the two hypotheses, the test statistic, the test assumptions, the *p*-value and the conclusion. If an exact *p*-value cannot be found from the table, state the range of values from the table.

1. The marketing manager of a company studied the commission income (X in thousand dollars) of its salespersons. He conducted tests on the hypotheses:

$$H_0: \mu = 15$$
 against $H_1: \mu > 15$

where μ denotes the mean of commission incomes from all salespersons. A random sample of 8 salespersons was drawn and their commission incomes were recorded as below:

The sample mean and sample variance are $\bar{x} = 19.5$ and $s^2 = 86.286$ respectively.

- (a) (4 marks) State the rejection region for the sample mean if the test was conducted at the 5% significance level using a t-test. Will you reject the null hypothesis?
- (b) (4 marks) The population variance of commission incomes is $\sigma^2 = 80$. Calculate the type II error of the z-test with a rejection region of $\bar{x} \geq 20$ if the true mean is $\mu = 18$.
- (c) (5 marks) Calculate the p-value of the test if Wilcoxon signed rank test is used.

2. A researcher investigated if the ages of the audience who favor TV programs A and B differ. A random sample of 13 members of the audience was selected and their ages were recorded below:

Favor program A (x)	15	16	18	20	21	22	
Favor program B (y)	17	19	23	25	26	30	33

The following summary statistics are given:

$$\bar{x} = 18.6667$$
, $\bar{y} = 24.7143$, $s_x^2 = 7.8667$, $s_y^2 = 32.2381$.

- (a) (5 marks) Test at the 5% significance level if the mean ages of the audience members differ between programs A and B using a two-sample t-test.
- (b) (5 marks) Test at the 5% significance level if the mean ages of the audience members differ between programs A and B using a Wilcoxon rank sum test.
- (c) (3 marks) Calculate a 95% confidence interval for the ratio of the variances of the ages of audience members who favor program B to those who favor program A.
- 3. In a randomized block design experiment, patients were grouped into five groups according to their weights. Patients in each group were then randomly assigned to three weight-reduction programs. The weight loss y_{ij} (in pounds) after the programs were recorded below:

Weight				
groups	A	В	С	Sum
I	11	12	8	31
II	21	8	9	38
III	15	16	13	44
IV	16	13	6	35
V	18	15	11	44
Sum	81	64	47	192

The following summary statistics are given:

$$\sum_{i=1}^{5} \sum_{j=1}^{3} y_{ij} = 192, \quad \sum_{i=1}^{5} \sum_{j=1}^{3} y_{ij}^{2} = 2696.$$

- (a) (6 marks) Complete the ANOVA table.
- (b) (4 marks) Test at the 5% significance level if the means of weight loss differ across programs using an ANOVA test.
- (c) (5 marks) Test at the 5% significance level if the means of weight loss differ across programs using the Friedman test.

4. A professor of economics studied the relationship between income (Y in thousand dollars) and education (X in years). A random sample of eight individuals was taken and the results are reported below:

$\overline{\text{Income } Y}$	58	40	55	35	43	41	52	49
Education X	16	11	15	8	12	10	13	14

The following summary statistics are given:

$$\sum_{i=1}^{8} x_i = 99, \quad \sum_{i=1}^{8} y_i = 373, \quad \sum_{i=1}^{8} x_i^2 = 1275, \quad \sum_{i=1}^{8} y_i^2 = 17849, \quad \sum_{i=1}^{8} x_i y_i = 4761.$$

- (a) (4 marks) Determine the least squares regression line with Y as the dependent variable.
- (b) (6 marks) Test the significance of the regression model in (a) at the 5% significance level. (Hint: Test if the slope of the regression line is zero.)
- (c) (5 marks) Determine a 95% prediction interval for the income level of a person who has 10 years of education.
- 5. The personnel manager of a consumer product company asked a random sample of employees how they felt about the work they were doing. The following table gives a breakdown of the level of job satisfaction by gender.

	Response					
Gender	Very satisfied	Fairly satisfied	Not satisfied			
Male	70	41	9			
Female	35	34	11			

- (a) (6 marks) Compute the expected frequencies for the six cells under the assumption of independence between the factors of gender and the level of job satisfaction.
- (b) (3 marks) Test at the 5% significance level the assumption of independence between the factors of gender and the level of job satisfaction.

****** This is the Last Page *******