THE UNIVERSITY OF SYDNEY STAT2012 STATISTICAL TESTS

Semester 2 Tutorial Week 1 2015

You need the statistical tables from the course website.

- 1. Let $Z \sim \mathcal{N}(0,1)$. Find
 - (a) P(-1.72 < Z < 0.52) and P(|Z| > 1.96).
 - (b) Find the values of a, b, and c such that $P(Z \le a) = 0.7291$, P(Z > b) = 0.10 and P(|Z| < c) = 0.90.
- 2. If $X \sim \mathcal{N}(10, 16)$, find P(X > 12), $P(X \le 7)$, and k such that $P(X \le k) = 0.2$.
- 3. $X_1, X_2, ..., X_{16}$ represents a random sample from a normal distribution with mean $\mu = 20$ and a standard deviation, $\sigma = 4$. Explain why the distribution of $\bar{X} 20$ is standard normal. Hence find the probability, $P(\bar{X} \geq 22)$.
- 4. Let $X_1, X_2, ..., X_{10}$ be a random sample of size 10 from an $\mathcal{N}(15, 2.53^2)$ distribution. Show that the probability, $P(\sum_{i=1}^{10} X_i \leq 158)$ is close to 0.8413.
- 5. Find
 - (a) $P(t_3 < 2.353)$ and $P(|t_{11}| > 2.718)$.
 - (b) Find the values of a, b, and c such that $P(t_{20} \le a) = 0.10$, $P(|t_{16}| > b) = 0.05$ and $P(t_{10} > c) = 0.90$.
- 6. $X_1, X_2, ..., X_n$ (*n* is small) represents a random sample from a normal distribution with a known mean μ and unknown standard deviation σ . State the distribution of $T = \frac{\bar{X} \mu}{S/\sqrt{n}}$ where *S* is the sample standard deviation.
- 7. A random sample of size 25 from a normal population with mean, $\mu = 50$ is obtained. It gave the sample mean of 48 and the sample standard deviation of 4. Calculate a value of T, $T_{obs} = \frac{\bar{x} \mu}{s/\sqrt{n}}$, as given in Q6. What is the df, ν associated with this t statistic? Find $P(t_{\nu} < T_{obs})$.