THE UNIVERSITY OF SYDNEY STAT2012 STATISTICAL TESTS

Semester 2 Tutorial Week 5 2015

Summary of week 4

• Two-sample t-test:

If X_1, X_2, \dots, X_{n_x} and Y_1, Y_2, \dots, Y_{n_y} are two independent samples from $\mathcal{N}(\mu_x, \sigma^2)$ and $\mathcal{N}(\mu_y, \sigma^2)$ respectively, the test statistic is

$$t_0 = \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{s_p \sqrt{1/n_x + 1/n_y}} \sim t_{n_x + n_y - 2},$$

where $s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$ is the pooled variance estimate based on s_x^2 and s_y^2 . If both n_x and n_y is large, the assumption of equal variance can be dropped. The test statistic is

$$t_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}} \sim t_{\nu}$$

where $\nu = \frac{\left[s_x^2/n_x + s_y^2/n_y\right]^2}{\frac{(s_x^2/n_x)^2}{n_x - 1} + \frac{(s_y^2/n_y)^2}{n_y - 1}}$. When both n_x and n_y are large, t_v is approx. $\mathcal{N}(0, 1)$.

• Two sample z-test:

If X_1, X_2, \dots, X_{n_x} and Y_1, Y_2, \dots, Y_{n_y} are two independent samples from $\mathcal{N}(\mu_x, \sigma_x^2)$ and $\mathcal{N}(\mu_y, \sigma_y^2)$ respectively where both σ_x^2 and σ_y^2 are known, the test statistic is

$$z_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim \mathcal{N}(0, 1)$$

• Wilcoxon rank-sum test:

If X_1, X_2, \dots, X_{n_x} and Y_1, Y_2, \dots, Y_{n_y} are two independent samples from the same kind of distribution differ by a shift, the test statistic is

$$w = \sum_{i=1}^{n_x} \operatorname{Rank}_i$$

where Rank_i is the rank of the ith observation in the pooled sample. Without ties or n_x & n_y are both small, the p-value can be found from table. Otherwise, the test statistic is

$$z_0 = \frac{w - E(W)}{\sqrt{Var(W)}} \sim \mathcal{N}(0, 1),$$
where $E(W) = \frac{n_x(N+1)}{2}$ and
$$Var(W) = \frac{n_x n_y}{N(N-1)} \left(\sum_{j=1}^N r_j^2 - \frac{N(N+1)^2}{4}\right).$$

Tutorial Questions

1. Two methods labelled A and B are used to measure the latent heat of fusion of ice.

A	79.98	80.04	80.02	80.04	80.03	80.03	80.04	79.97
	80.05	80.03	80.02	80.00	80.02			
В	80.02	79.94	79.98	79.97	79.97	80.03	79.95	79.97

Test the claim that method A gives higher measurements using the two-sample t-test. It is known that the sample means and sample s.d. are $\bar{x} = 80.02$, $s_x = 0.02397$, $\bar{y} = 79.98$ and $s_y = 0.03137$ respectively.

2. The pig's weights under diet X or Y are given in the following table. Test if there is a difference in weight using the Wilcoxon rank sum test.

You may calculate the exact p-value by deriving the exact distribution.

3. Show that when m=3 and n=3, the probabilities $\Pr(W \leq w)$ where $w=6,\ldots,11$ are 0.05, 0.10, ..., 0.65 respectively as given in the Wilcoxon Rank Sum Distribution (WSRD) table.

4. Prove that when W is approximated by a normal distribution, the variance of W is given by

$$Var(W) = \frac{n_x n_y}{N(N-1)} \left(\sum_{i=1}^{N} r_i^2 - \frac{N(N+1)^2}{4} \right).$$

Extra Practice Problems

1. In a clinical trial, a new drug is tested if it will lower the cholesterol levels of patients. The following information is obtained from the treatment and control groups.

	Treatment group	Control group
Sample size	$n_x = 7$	$n_y = 8$
Sample mean	$\bar{x} = 6.34286$	$\overline{y} = 8.0625$
Sample variance	$s_x^2 = 1.40102^2$	$s_y^2 = 1.10446^2$

Test if the cholesterol levels of patients in treatment group is lower than those in control group using the two sample t-test.

2. Repeat the test in Question 1 without the assumption of equal variance.

3. From a group of nine rats available for a study of transfer of learning, five were selected at random and were trained to imitate leader rats in a maze. They were then placed together with four untrained control rats in a situation where imitation of the leaders enable them

2

to avoid receiving an electric shock. The results (the number of trials required to obtain ten correct responses in ten consecutive trials) were as follow:

Trained rats	78	64	75	45	82
Controls	110	70	53	51	

Test if there is a difference in the number of trials required between the trained rats and the controls using the Wilcoxon rank sum test.